ON THE GEOMETRY AND CLASSIFICATION OF ABSOLUTE PARALLELISMS. II

JOSEPH A. WOLF

8. The irreducible case

Let (M, ds^2) be a simply connected globally symmetric pseudo-riemannian manifold, and ϕ an absolute parallelism on M consistent with ds^2 . We assume (M, ds^2) to be irreducible. Our standing notation is

- \mathfrak{p} : the LTS of ϕ -parallel vector fields on M,
- g: the Lie algebra of all Killing vector fields on M,
- σ_x : conjugation of g by the symmetry s_x at $x \in M$,
- g = f + m: eigenspace decomposition under σ_x .

The irreducibility says that \mathfrak{m} is a simple noncommutative LTS, and thus (Lemma 6.2) says the same for \mathfrak{p} .

- **8.1. Lemma.** Either $[\mathfrak{p},\mathfrak{p}] = \mathfrak{p}$ or $[\mathfrak{p},\mathfrak{p}] \cap \mathfrak{p} = 0$.
- *Proof.* Let $\mathfrak{i} = [\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{p}$. Then $[[\mathfrak{p}, \mathfrak{p}], \mathfrak{p}] \subset \mathfrak{p}$ implies $[\mathfrak{i}, \mathfrak{p}] \subset \mathfrak{i}$ and so $[\mathfrak{i}\mathfrak{p}\mathfrak{p}] \subset \mathfrak{i}$. Thus \mathfrak{i} is a LTS ideal in \mathfrak{p} . By simplicity, either $\mathfrak{i} = 0$ or $\mathfrak{i} = \mathfrak{p}$.
- If i = 0, then $[p, p] \cap p = 0$. If i = p, then $p \subset [p, p]$. As $[i, p] \subset i$, also $[p, p] \subset p$. Hence [p, p] = p. q.e.d.

We do the group manifolds immediately.

- **8.2. Proposition.** Let (M, ds^2) be irreducible simply connected and globally symmetric, with consistent absolute parallelism ϕ such that the LTS of ϕ -parallel fields satisfies $[\mathfrak{p},\mathfrak{p}] \cap \mathfrak{p} \neq 0$. Then $[\mathfrak{p},\mathfrak{p}] = \mathfrak{p},\mathfrak{p}$ is a simple real Lie algebra, and $(M, \phi, ds^2) \cong (P, \lambda, d\sigma^2)$ where
 - (i) P is the simply conncted group for \mathfrak{p} ,
 - (ii) λ is the parallelism of left translation on P, and
- (iii) $d\sigma^2$ is the bi-invariant metric induced by a nonzero multiple of the Killing form of \mathfrak{p} .

The symmetry of $(P, d\sigma^2)$ at $1 \in P$ is given by $s(x) = x^{-1}$. The group G of all isometries of $(P, d\sigma^2)$ has isotropy subgroup K at 1 given by

$$K = \operatorname{Aut}_{R}(\mathfrak{p}) \cup s \cdot \operatorname{Aut}_{R}(\mathfrak{p})$$
.

The identity component G_0 of G is locally isomorphic to $P \times P$, acting by left and right translations. G is the disjoint union of cosets $\alpha \cdot G_0$ and $s\alpha \cdot G_0$ as α

Received March 8, 1971. Research partially supported by National Science Foundation Grand GP-16651; continuation of Part I, J. Differential Geometry 6 (1972) 317-342.

runs through a system of representatives of $\operatorname{Aut}_R(\mathfrak{p})/\operatorname{Int}(\mathfrak{p})$. Finally, $s(\lambda)$ is the parallelism of right translation, and is the only other absolute parallelism on P consistent with $d\sigma^2$.

Proof. Theorem 3.8, Lemma 8.1, fact (10.6), and the fact that any invariant bilinear form on a real simple Lie algebra is a multiple of the Killing form, give us $(M, \phi, ds^2) \cong (P, \lambda, d\sigma^2)$ with $s(\lambda) = \rho$, as claimed. The assertions on G and K follow from (5.2) and the fact that every derivation of a simple Lie algebra is inner. q.e.d.

Now we start in on the non-group case.

8.3. Lemma. Let $[p,p] \cap p = 0$. Then g is simple, g = [p,p] + p, and there is an automorphism

(8.4)
$$\varepsilon_x \colon g \to g$$
 such that $\varepsilon_x(\xi) = \xi - \sigma_x(\xi)$ for $\xi \in \mathfrak{p}$.

Proof. f = [m, m] is faithfully represented as the Lie algebra of all LTS derivations of m. Now (10.3) shows $g = f_S(m)$ standard Lie enveloping algebra; as m is simple this forces $g = f_U(m)$ universal Lie enveloping algebra. If g were not simple, then (10.7) m would be the LTS of a Lie algebra, and Theorem 3.8 would force $[p, p] \subset p$. Thus g is simple.

Let $h: \mathfrak{m} \to \mathfrak{p}$ be the inverse of the LTS isomorphism f_x of Lemma 6.2. Then h extends to a Lie algebra homomorphism of $\mathfrak{l}_U(\mathfrak{m}) = \mathfrak{g}$ onto the algebra $[\mathfrak{p}, \mathfrak{p}] + \mathfrak{p}$ generated by \mathfrak{p} . As \mathfrak{g} is simple, $h: \mathfrak{g} \cong [\mathfrak{p}, \mathfrak{p}] + \mathfrak{p}$. In particular $[\mathfrak{p}, \mathfrak{p}] + \mathfrak{p} = \mathfrak{g}$ and we realize ε_x as h^{-1} . q.e.d.

Our method consists of showing that σ_x and ε_x generate such a large group of outer automorphisms of $\mathfrak g$ that we can deduce $\mathfrak g$ to be of type D_4 and ε_x to be the triality. Some technical problem (proving σ_x outer) forces us to reduce to the compact case.

We construct a compact riemannian version of (M, ds^2) . Choose

(8.5a)
$$\theta$$
: Cartan involution of g.

Thus θ is an involutive automorphism of g, whose fixed point set is a maximal compactly embdded subalgebra $\mathfrak{l} \subset \mathfrak{g}$. Let \mathfrak{q} be the -1 eigenspace of θ on g. Then we have

(8.5b)
$$g = l + q$$
 Cartan decomposition under θ .

Now choose $x \in M$ so that σ_x commutes with θ . That is always possible because the σ_z , $z \in M$, form a conjugacy class of semi-simple automorphisms of \mathfrak{g} . That done, we have

$$(8.5c) f = (f \cap I) + (f \cap q), m = (m \cap I) + (m \cap q).$$

Now define

(8.6a)
$$g^* = l + iq$$
 compact real form of g^c ,

and define subspaces of g* by

(8.6b)
$$\check{\mathbf{f}}^* = \check{\mathbf{f}}^c \cap \mathfrak{g}^* , \qquad \mathfrak{m}^* = \mathfrak{m}^c \cap \mathfrak{g}^* .$$

 σ_x extends to g^c by linearity and then restricts to an automorphism (still denoted σ_x) of g^* . Now

(8.6c)
$$g^* = f^* + m^*$$
 eigenspace decomposition under σ_x .

To pass to the group level we define

G*: simply connected group with Lie algebra g*,

 K^* : analytic subgroup for f^* .

Then G^* is a compact semisimple group, and K^* is a closed subgroup because it is identity component of the fixed point set of σ_x on G^* . Now we have

$$M^* = G^*/K^*$$
: compact simply connected manifold.

The Killing form κ of g^* is negative definite, so the restriction of $-\kappa$ to m^* induces

 dt^2 : G^* -invariant riemannian metric on M^* .

We summarize the main properties as follows.

8.7. Lemma. (M^*, dt^2) is a simply connected globally symmetric riemannian manifold of compact type, and \mathfrak{g}^* is the Lie algebra of all Killing vector fields on (M^*, dt^2) . For simple \mathfrak{g} , (M^*, dt^2) is irreducible if and only if \mathfrak{g}^c is simple. If \mathfrak{g} is simple but \mathfrak{g}^c is not simple, then $\mathfrak{g} = \mathfrak{l}^c$ with \mathfrak{l} compact simple and σ_x C-linear on \mathfrak{g} , and $\mathfrak{g}^* = \mathfrak{l} \oplus \mathfrak{l}$ with $\mathfrak{l}^* = (\mathfrak{l} \cap \mathfrak{l}) \oplus (\mathfrak{l} \cap \mathfrak{l})$.

Proof. The riemannian metric dt^2 is symmetric because it is induced by an invariant bilinear form $-\kappa$ of \mathfrak{g}^* . As \mathfrak{g}^* is semisimple and σ_x -stable it must contain every Killing vector field of (M^*, dt^2) .

If g^c is simple, then g^* is simple, so (M, dt^2) is irreducible. If (M, dt^2) irreducible, then m^* is a simple LTS; if further g is simple, then m (thus also m^*) is not the LTS of a Lie algebra; thus g^* is simple, and that proves g^c simple.

If (M, ds^2) is compact, then $(M^*, dt^2) = (M, cds^2)$ for some real $c \neq 0$. If (M, ds^2) is riemannian, then (Corollary 4.5) it is compact.

We carry ϕ over to an absolute parallelism on (M^*, dt^2) .

8.8. Lemma. The Cartan involution θ can be chosen so that $\theta(\mathfrak{p}) = \mathfrak{p}$. Assume θ so chosen, and define $\mathfrak{p}^* = \mathfrak{p}^c \cap \mathfrak{g}^*$. Then there is an absolute parallelism ϕ^* on M^* consistent with dt^2 , such that \mathfrak{p}^* is the LTS of ϕ^* -parallel vector fields on M^* . If $[\mathfrak{p},\mathfrak{p}] = \mathfrak{p}$, then $[\mathfrak{p}^*,\mathfrak{p}^*] = \mathfrak{p}^*$. If $[\mathfrak{p},\mathfrak{p}] \cap \mathfrak{p} = 0$, then $[\mathfrak{p}^*,\mathfrak{p}^*] \cap \mathfrak{p}^* = 0$.

Proof. If $[\mathfrak{p},\mathfrak{p}] = \mathfrak{p}$, then $\mathfrak{g} = \mathfrak{v} \oplus \mathfrak{v}$ with each summand stable under any choice of θ , and $\mathfrak{p} = \mathfrak{v} \oplus 0$. Then $\mathfrak{g}^* = \mathfrak{v}^* \oplus \mathfrak{v}^*$ with $\mathfrak{p}^* = \mathfrak{v}^* \oplus 0$ and all the assertions are trivial.

Now suppose $[\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{p} = 0$. Then from (8.4) we have an involutive automorphism $\pi = \varepsilon_x^{-1} \sigma_x \varepsilon_x$ whose fixed point set is $[\mathfrak{p}, \mathfrak{p}]$ and whose -1 eigenspace is \mathfrak{p} . Note that this shows π to be independent of x. As π is a semisimple automorphism of \mathfrak{g} , we can choose θ to commute with π .

We now assume further that θ commutes with π . In other words, using (8.5),

$$(8.9a) \quad [\mathfrak{p},\mathfrak{p}] = ([\mathfrak{p},\mathfrak{p}] \cap \mathfrak{l}) + ([\mathfrak{p},\mathfrak{p}] \cap \mathfrak{q}), \qquad \mathfrak{p} = (\mathfrak{p} \cap \mathfrak{l}) + (\mathfrak{p} \cap \mathfrak{q}).$$

From this we see

$$(8.9b) [\mathfrak{p}^*, \mathfrak{p}^*] = [\mathfrak{p}, \mathfrak{p}]^c \cap \mathfrak{g}^*, \text{ so } \mathfrak{g}^* = [\mathfrak{p}^*, \mathfrak{p}^*] + \mathfrak{p}^*.$$

In order to proceed we must check that

$$(8.10) (1 - \sigma_x)[\mathfrak{p}, \mathfrak{p}] = \mathfrak{m} , (1 - \sigma_x)[\mathfrak{p}^*, \mathfrak{p}^*] = \mathfrak{m}^* .$$

In view of (8.9) it suffices to check the first of these assertions. If $(1 - \sigma_x)[\mathfrak{p}, \mathfrak{p}] \neq \mathfrak{m}$, then we have $0 \neq u \in \mathfrak{m}$ such that

$$b_x((1-\sigma_x)[\xi,\eta],u)=0$$
 for all $\xi,\eta\in\mathfrak{p}$.

Let $\zeta \in \mathfrak{p}$ with $(1 - \sigma_x)\zeta = u$. Now

$$ds_x^2(\xi, [\eta, \zeta]) = ds_x^2([\xi, \eta], \zeta) = 0$$
 for all $\xi, \eta \in \mathfrak{p}$

implying $[\mathfrak{p}, \zeta] = 0$. Applying ε_x now $[\mathfrak{m}, u] = 0$. As \mathfrak{m} is a simple noncommutative LTS now u = 0. We conclude $(1 - \sigma_x)[\mathfrak{p}, \mathfrak{p}] = \mathfrak{m}$, and (8.10) is verified.

Let J^* denote the analytic subgroup of G^* for $[\mathfrak{p}^*, \mathfrak{p}^*]$. It is closed in G^* , thus compact, because it is the identity component of the fixed point set of the automorphism $\pi = \varepsilon_x^{-1} \sigma_x \varepsilon_x$ on G^* . Denote

$$(8.11a) x^* = 1 \cdot K^* \in M^*.$$

Now (8.10) shows $J^*(x^*)$ is open in M^* . As J^* is compact, so is $J^*(x^*)$. Thus

$$(8.11b) J^*(x^*) = M^*.$$

Recall that dt^2 is induced by negative of the Killing form κ of \mathfrak{g}^* . Note that $\frac{1}{2}(1-\sigma_x)$ is κ -orthogonal projection of \mathfrak{g}^* to \mathfrak{m}^* , and also from (8.9) that ε_x is well defined on \mathfrak{g}^* . Now let ξ , $\eta \in \mathfrak{p}^*$. If $j \in J^*$, then ad $(j)^{-1}\xi$, ad $(j)^{-1}\eta \in \mathfrak{p}^*$, and we compute

$$4dt_{j(x^*)}^2(\xi,\eta) = 4dt_{x^*}^2(\text{ad }(j)^{-1}\xi, \text{ ad }(j)^{-1}\eta)$$

= $-\kappa((1-\sigma_x) \text{ ad }(j)^{-1}\xi, (1-\sigma_x) \text{ ad }(j)^{-1}\eta)$
= $-\kappa(\xi_x \text{ ad }(j)^{-1}\xi, \xi_x \text{ ad }(j)^{-1}\eta) = -\kappa(\xi,\eta)$,

which is independent of the choice of $j \in J^*$. But (8.11) says that every element of M^* is of the form $j(x^*)$. Thus

(8.12) if
$$\xi, \eta \in \mathfrak{p}^*$$
, then $dt^2(\xi, \eta)$ is constant on M^* .

Choose a basis $\{\xi_1, \dots, \xi_n\}$ of \mathfrak{p}^* . The ξ_{ix^*} form a basis of $M_{x^*}^*$ because $(1 - \sigma_x)\mathfrak{p}^* = \mathfrak{m}^*$. Now (8.12) says that $\{\xi_1, \dots, \xi_n\}$ is a global frame on M^* with the $dt^2(\xi_i, \xi_j)$ constant. Recall that the ξ_i are Killing vector fields of (M^*, dt^2) . Corollary 4.15 now says that M^* has an absolute parallelism ϕ^* consistent with dt^2 such that \mathfrak{p}^* is the space of ϕ^* -parallel vector fields. q.e.d.

If ℓ is a Lie algebra over a field F, then $\operatorname{Aut}_F(\ell)$ denotes the group of all automorphisms of ℓ over F. If F = R or F = C, then $\operatorname{Int}(\ell)$ denotes the normal subgroup of $\operatorname{Aut}_F(\ell)$ consisting of inner automorphisms, i.e., generated by the $\exp(\operatorname{ad} v)$ with $v \in \ell$. If ℓ is real or complex semisimple, then $\operatorname{Int}(\ell)$ is the identity component of the Lie group $\operatorname{Aut}_F(\ell)$.

Now we begin to identify (M, ds^2) .

8.13. Lemma. Suppose $[\mathfrak{p},\mathfrak{p}] \cap \mathfrak{p} = 0$. If $\alpha \in \operatorname{Aut}_R(\mathfrak{g})$ is induced by an isometry of (M, ds^2) , in particular, if $\alpha \in \operatorname{Int}(\mathfrak{g})$, then $\alpha(\mathfrak{m}) \neq \mathfrak{p}$, and $\varepsilon_x \alpha$ does not commute with σ_x . If $\alpha^* \in \operatorname{Aut}_R(\mathfrak{g}^*)$ is induced by an isometry of (M^*, dt^2) , in particular, if $\alpha^* \in \operatorname{Int}(\mathfrak{g}^*)$, then $\alpha^*(\mathfrak{m}^*) \neq \mathfrak{p}^*$, and $\varepsilon_x \alpha^*$ does not commute with σ_x .

Proof. Let $\alpha \in \operatorname{Aut}_R(\mathfrak{g})$ induced by an isometry a of (M, ds^2) . Then $\psi = a^{-1}(\phi)$ is an absolute parallelism on M consistent with ds^2 , and the LTS of ψ -parallel vector fields is $\alpha^{-1}(\mathfrak{p})$. If $\alpha(\mathfrak{m}) = \mathfrak{p}$, then \mathfrak{m} is the LTS of ψ -parallel fields, and the comparison of (4.7) with (5.2) proves (M, ds^2) to be flat. As (M, ds^2) is not flat, we conclude $\alpha(\mathfrak{m}) \neq \mathfrak{p}$. In particular, $\varepsilon_x \alpha(\mathfrak{m}) \neq \mathfrak{m}$, i.e., $\varepsilon_x \alpha$ does not preserve the -1 eigenspace of σ_x , so $\varepsilon_x \alpha$ does not commute with σ_x .

Lemma 8.8 allows us to use the same argument for α^* , \mathfrak{m}^* and \mathfrak{p}^* . q.e.d. If \mathfrak{g}^c is not simple, Lemma 8.7 tells us $\mathfrak{g} = \mathfrak{l}^c$ where \mathfrak{l} is compact simple and $\sigma_x \in \operatorname{Aut}_{\mathcal{C}}(\mathfrak{l}^c)$. However, it is conceivable that our extension $\varepsilon_x \in \operatorname{Aut}_{\mathcal{R}}(\mathfrak{g})$ of $f_x \colon \mathfrak{p} \cong \mathfrak{m}$ be complex antilinear. Should that be the case, note that the Cartan involution θ is complex antilinear on \mathfrak{l}^c , so $\varepsilon_x \theta \in \operatorname{Aut}_{\mathcal{C}}(\mathfrak{l}^c)$. Thus either

(8.14a)
$$\varepsilon_x \in \operatorname{Aut}_{\mathcal{C}}(\mathfrak{I}^{\mathcal{C}})$$
 and we denote $\varepsilon_x' = \varepsilon_x \in \operatorname{Aut}_{\mathcal{C}}(\mathfrak{I}^{\mathcal{C}})$,

or

(8.14b)
$$\varepsilon_x \notin \operatorname{Aut}_C(\mathfrak{I}^C)$$
 and we denote $\varepsilon_x' = \varepsilon_x \theta \in \operatorname{Aut}_C(\mathfrak{I}^C)$.

8.15. Lemma. Let $[\mathfrak{p},\mathfrak{p}] \cap \mathfrak{p} = 0$. If \mathfrak{g}^c is simple, then $\operatorname{Int}(\mathfrak{g}^c), \sigma_x \cdot \operatorname{Int}(\mathfrak{g}^c)$ and $\varepsilon_x \cdot \operatorname{Int}(\mathfrak{g}^c)$ are three distinct components of $\operatorname{Aut}_c(\mathfrak{g}^c)$. If \mathfrak{g}^c is not simple, so $\mathfrak{g} = \mathfrak{l}^c$ with \mathfrak{l} compact simple, then $\operatorname{Int}(\mathfrak{g}), \sigma_x \cdot \operatorname{Int}(\mathfrak{g})$ and $\varepsilon_x' \cdot \operatorname{Int}(\mathfrak{g})$ are three distinct components of $\operatorname{Aut}_c(\mathfrak{l}^c)$.

Proof. First consider the case where g^C is simple. Then g^* is simple and (M^*, dt^2) is irreducible. Every nonzero element of p^* is a never-vanishing vector field on M^* , so the Euler-Poincaré characteristic $\chi(M^*) = 0$. That implies rank $G^* > \operatorname{rank} K^*$, so σ_x is an outer automorphism on g^* . Now $\sigma_x \notin \operatorname{Int}(g^C)$.

If ε_x is an inner automorphism of \mathfrak{g}^C , then it is inner on \mathfrak{g}^* giving $\alpha^* = \varepsilon_x^{-1} \in \operatorname{Int}(\mathfrak{g}^*)$ such that $\varepsilon_x \alpha^*$ commutes with σ_x . Thus Lemma 8.13 forces $\varepsilon_x \notin \operatorname{Int}(\mathfrak{g}^C)$.

It σ_x and ε_x differ by an inner automorphism of \mathfrak{g}^C , then $\alpha^* = \varepsilon_x^{-1} \sigma_x \in \operatorname{Int}(\mathfrak{g}^*)$ such that $\varepsilon_x \alpha^*$ commutes with σ_x . Thus Lemma 8.13 forces $\sigma_x \cdot \operatorname{Int}(\mathfrak{g}^C) \cap \varepsilon_x \cdot \operatorname{Int}(\mathfrak{g}^C)$ to be empty.

The assertions are proved for g^c simple. Now suppose g^c to be not simple. Then $g = \ell^c$ with ℓ compact simple and $\sigma_x \in \operatorname{Aut}_{\mathcal{C}}(\ell^c)$ by Lemma 8.7, and we have $\varepsilon'_x \in \operatorname{Aut}_{\mathcal{C}}(\ell^c)$ as in (8.14). Now $g^* \cong \ell \oplus \ell$ with each summand stable under σ_x , so the argument for simple g^c shows σ_x to be outer on each summand of g^* . It follows that σ_x is outer on $\ell^c = g$, i.e., that $\sigma_x \notin \operatorname{Int}(g)$.

If ε_x' is inner on \mathfrak{l}^C then $\alpha' = \varepsilon_x'^{-1} \in \operatorname{Int}(\mathfrak{g})$ and $\varepsilon_x' \alpha'$ commutes with σ_x . From (8.5c) we see that θ is induced by an isometry of (M, ds^2) . Thus $\varepsilon_x \alpha$ commutes with σ_x , where either $\alpha = \alpha'$ or $\alpha = \theta \alpha'$, and where α is induced by an isometry of (M, ds^2) . That contradicts Lemma 8.13, forcing $\varepsilon_x' \notin \operatorname{Int}(\mathfrak{g})$. A similar modification of the argument for simple \mathfrak{g}^C proves $\sigma_x \cdot \operatorname{Int}(\mathfrak{g}) \cap \varepsilon_x' \cdot \operatorname{Int}(\mathfrak{g})$ to be empty.

The assertions are proved for g^c non-simple. q.e.d.

Given integers $p, q \ge 0$ and a basis $\{e_1, \dots, e_{p+q}\}$ of R^{p+q} we have the symmetric nondegenerate bilinear form $b_{p,q}$ on R^{p+q} given by

$$b_{p,q} \left(\sum_{i=1}^{p+q} a^i e_i, \sum_{j=1}^{p+q} c^j e_j \right) = \sum_{k=1}^p a^k c^k - \sum_{k=1}^q a^{p+k} c^{p+k}$$
.

Now denote

$$\mathrm{O}(p,q)$$
: real orthogonal group of $b_{p,q}$,

so the usual orthogonal group in m real variables is O(m) = O(m, 0). Now O(p, q) has four components if $pq \neq 0$, and two components if pq = 0. Denote

SO(p,q): identity component of O(p,q),

 $\mathfrak{So}(p,q)$: Lie algebra of O(p,q).

Then of course

$$SO(m) = SO(m, 0)$$
, $\mathfrak{So}(m) = \mathfrak{So}(m, 0)$.

Consider the (p + q - 1)-manifold

$$SO(p,q)(e_1) \cong SO(p,q)/SO(p-1,q)$$
, $p \ge 1$;

 $b_{p,q}$ induces a pseudo-riemannian metric of signature (p-1,q) and constant curvature 1 under which it is globally symmetric, and the case q=0 is the sphere $S^{p-1}=SO(p)/SO(p-1)$. We also have

$$SO(p,q)(e_{p+q}) \cong SO(p,q)/SO(p,q-1)$$
, $q \ge 1$;

there $b_{p,q}$ induces a globally symmetric preudo-riemannian metric of signature (p, q - 1) and constant curvature -1, and the case q = 1 is the real hyperbolic space $H^p = SO(p, 1)/SO(p)$. Finally denote

$$\mathrm{O}(m,C)=\mathrm{O}(m)^c$$
 complex orthogonal group of $b_{p,m-p}$;

$$SO(m, C) = SO(m)^{C}$$
 identity component; and

$$\mathfrak{So}(m,C)=\mathfrak{So}(m)^C$$
 Lie algebra of $SO(m,C)$.

Viewing $R^{p+q} \subset C^{p+q}$ we have (m = p + q)

$$SO(m, C)(e_i) \cong SO(m, C)/SO(m-1, C)$$
,

globally symmetric pseudo-riemannian manifold of signature (m-1, m-1) and nonconstant curvature, affine complexification of S^{m-1} .

Finally we have our classification. Recall that we are using the notation

G: group of all isometries of (M, ds^2) ;

g: Lie algebra of G, Killing fields of (M, ds^2) ;

 $x \in M$ and $K = \{g \in G : g(x) = x\}$ so M = G/K;

g = f + m: decomposition under symmetry σ_x ;

 \mathfrak{p} : the LTS of ϕ -parallel vector fields on M.

8.16. Theorem. Let (M, ds^2) be an irreducible simply connected globally symmetric pseudo-riemannian manifold with consistent absolute parallelism ϕ . If $[\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{p} \neq 0$, then (M, ϕ, ds^2) is a group manifold as in Proposition 8.2. If $[\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{p} = 0$, then there are just three cases, all of which occur, as follows.

Case 1. M = SO(8)/SO(7), the sphere S^7 , and ds^2 is a positive or negative multiple of the SO(8)-invariant riemannian metric of constant curvature 1. Here G = O(8) and K = O(7), 2-component groups.

- Case 2. M = SO(4, 4)/SO(3, 4), diffeomorphic to $S^3 \times R^4$, and ds^2 is a positive or negative multiple of the SO(4, 4)-invariant pseudo-riemannian metric of signature (3, 4) and constant curvature 1. Here G = O(4, 4) and K = O(3, 4), 4-component groups.
- Case 3. M = SO(8, C)/SO(7, C), affine complexification of S^7 and diffeomorphic to $S^7 \times R^7$, and ds^2 is a multiple of the nonconstant curvature metric of signature (7,7) induced by the Killing form of SO(8,C). Here

$$G = O(8, C) \cup \nu \cdot O(8, C)$$
, $K = O(7, C) \cup \nu \cdot O(7, C)$,

where ν is complex conjugation of C^8 over R^8 (so that conjugation by ν is a Cartan involution θ of G_0).

All possibilities for ϕ are as follows. There is a triality automorphism ε of order 3 on g with fixed point set g' of type G_2 such that both ε and σ_x commute with a Cartan involution θ . Denote

$$\mathfrak{p}_0 = \varepsilon^{-1}(\mathfrak{m})$$
 so that $[\mathfrak{p}_0, \mathfrak{p}_0] = \varepsilon^{-1}(\mathfrak{f})$,

and observe that

 $\varepsilon^{-1}(f)$ is the image of the spin representation of f.

Denote

$$J = \{j \in G : \operatorname{ad}(j)\mathfrak{p}_0 = \mathfrak{p}_0\}$$
, and $\mathfrak{p}_r = \operatorname{ad}(g)\mathfrak{p}_0$ for $r = gJ \in G/J$.

Then J_0 is the analytic subgroup of G for $\varepsilon^{-1}(f)$, and

- (i) $J = \{\pm I_8\} \cdot J_0$ 2-component group in cases 1 and 2, $J = \{\pm I_8, \pm \nu\} \cdot J_0$ 4-component group in case 3;
 - (ii) the \mathfrak{p}_r , $r \in G/J$, are mutually inequivalent under the action of G;
- (iii) if $r \in G/J$ then there is an absolute parallelism ϕ_{τ} on M consistent with ds^2 whose LTS is \mathfrak{p}_{τ} ;
- (iv) every absolute parallelism on M consistent with ds^2 is in the 7-parameter family $\{\phi_\tau\}_{\tau \in G/J}$;
- (v) the parameter space G/J of $\{\phi_r\}$ is diffeomorphic (via ε) to the disjoint union of two copies of $M/\{\pm I_8\}$; and
 - (vi) J_0 is transitive on M.

Proof. If $[\mathfrak{p},\mathfrak{p}] \cap \mathfrak{p} \neq 0$, we apply Proposition 8.2. Now suppose $[\mathfrak{p},\mathfrak{p}] \cap \mathfrak{p} = 0$.

First, consider the case where \mathfrak{g} is a compact simple Lie algebra. Then \mathfrak{g}^c is simple and Lemma 8.15 says that $\operatorname{Aut}_c(\mathfrak{g}^c)/\operatorname{Int}(\mathfrak{g}^c)$ has order ≥ 3 , so $\operatorname{Aut}_R(\mathfrak{g})/\operatorname{Int}(\mathfrak{g})$ has order ≥ 3 . This implies that \mathfrak{g} is of Cartan classification type D_4 , i.e., $\mathfrak{g} = \mathfrak{So}(8)$. Again by Lemma 8.15, \mathfrak{e}_x is triality, and σ_x is outer

⁴ The parameters are real in cases 1 and 2, and complex in case 3.

on g, so the possibilities for \mathfrak{f} are $\mathfrak{So}(7)$ and $\mathfrak{So}(3) \oplus \mathfrak{So}(5)$. In the latter case \mathfrak{f} and $\varepsilon_x(\mathfrak{f})$ would be Int (g)-conjugate, so we would have $\alpha \in \text{Int}(\mathfrak{g})$ with $\varepsilon_x\alpha(\mathfrak{f})=\mathfrak{f}$; then $\varepsilon_x\alpha$ commutes with σ_x in violation of Lemma 8.13. Thus $\mathfrak{f}=\mathfrak{So}(7)$ and $M=SO(8)/SO(7)=S^7$, as in case 1. Invariance forces ds^2 to be a multiple of the standard riemannian metric $d\sigma^2$ of constant curvature 1. Then $(M,d\sigma^2)$ and (M,ds^2) have the same isometry group, so G=O(8), whence K=O(7).

Second, consider the case where g is noncompact but g^C is simple. Then g^* is simple. Lemma 8.8 and the argument for compact simple g show that $g^* = 30(8)$, $f^* = 30(7)$ and $M^* = S^7$, and that ε_x is triality on g^* . The noncompact real forms of 30(8, C) are the 30(p, 8-p), $1 \le p \le 4$; the real form $30^*(8)$ whose maximal compactly embedded subalgebra is the Lie algebra 30(2,6). However g is stable under the triality automorphism ε_x of 30(2,6). However g is stable under the triality automorphism ε_x of 30(2,6). Let 30(2,6) and 30(2,6) are induces an automorphism 30(2,6) and 30(2,6) and 30(2,6) are induces an automorphism of 30(2,6) and 30

Third, consider the case where g^c is not simple. Lemma 8.7 says $g = I^c$ with I compact simple, $I = (I \cap I)^c$, $g^* = I \oplus I$ and $I^* = (I \cap I) \oplus (I \cap I)$. The argument for compact simple g says I = So(8), $I \cap I = \text{So}(7)$ and $I \cap I \cap I \cap I$. Thus g = So(8, C), I = So(7, C) and $I \cap I \cap I \cap I \cap I$. Now $I \cap I \cap I \cap I \cap I$ are specified as in case 3.

It remains to verify the assertions on the construction of all consistent absolute parallelisms for the spaces (M, ds^2) of cases 1, 2 and 3.

Let M = G/K and g = f + m as in case 1, 2 or 3 of the theorem. Then g admits a triality automorphism ε of order 3 with fixed point set g^{ε} of type G_2 [12, Table 7.14]. Fix a Cartan involution θ of g which commutes with σ_x . As $\varepsilon^3 = 1$, ε is a semisimple automorphism of g, so we may replace ε by an Int (g)-conjugate if necessary to arrange $\varepsilon\theta = \theta\varepsilon$. That done we use θ to construct a compact real form $g^* = f^* + m^*$ of g^C as in (8.5) and (8.6), and ε extends by linearity to g^C preserving g^* . Define $\mathfrak{p}_0 = \varepsilon^{-1}(\mathfrak{m})$ as prescribed; then $\mathfrak{p}_0^* = \mathfrak{p}_0^C \cap g^*$ is $\varepsilon^{-1}(\mathfrak{m}^*)$.

Let κ denote the Killing form on g. We need to prove the following facts:

(8.17a)
$$(1 - \sigma_x)\mathfrak{p}_0 = \mathfrak{m}$$
, $(1 - \sigma_x)[\mathfrak{p}_0, \mathfrak{p}_0] = \mathfrak{m}$, and

(8.17b) if
$$\xi, \eta \in \mathfrak{p}_0$$
, then $\kappa(\xi, \eta) = \kappa((1 - \sigma_x)\xi, (1 - \sigma_x)\eta)$.

To do this we note that $g^{\varepsilon} = f \cap \varepsilon^{-1}(f)$, so the orthocomplement of g^{ε} in g

relative to κ is $\mathfrak{k}^{\perp} + \varepsilon^{-1}(\mathfrak{k}^{\perp}) = \mathfrak{m} + \varepsilon^{-1}(\mathfrak{m}) = \mathfrak{m} + \mathfrak{p}_0$. Now ε^{-1} is a rotation by $2\pi/3$ on $\mathfrak{m}^* + \mathfrak{p}_0^*$. As $\frac{1}{2}(1 - \sigma_x)$ is the orthogonal projection of $\mathfrak{m}^* + \mathfrak{p}_0^*$ to \mathfrak{m}^* , that says $\kappa(\xi, \eta) = \kappa((1 - \sigma_x)\xi, (1 - \sigma_x)\eta)$ for $\xi, \eta \in \mathfrak{p}_0^*$. The same follows by linearity for $\xi, \eta \in \mathfrak{p}_0^G$, and thus for $\xi, \eta \in \mathfrak{p}_0$. That proves (8.17b), and the first assertion of (8.17a) follows. Let dim denote dim_R in cases 1 and 2, and dim_C in case 3. Then dim g = 28, dim f = 21, dim g' = 14 and dim $\mathfrak{m} = 7$. Thus dim $(1 - \sigma_x)[\mathfrak{p}_0, \mathfrak{p}_0] = \dim \varepsilon^{-1}(f) - \dim g' = 21 - 14 = 7 = \dim \mathfrak{m}$, proving the second part of (8.17a). Now (8.17) is verified.

As prescribed, let J be the normalizer of \mathfrak{p}_0 in G. As \mathfrak{f} is the normalizer of \mathfrak{m} in \mathfrak{g} , so $[\mathfrak{p}_0, \mathfrak{p}_0] = \varepsilon^{-1}(\mathfrak{f})$ is the Lie algebra of J, and assertion (i) on the structure of J follows.

Let $j \in J$ and $\xi, \eta \in \mathfrak{p}_0$, and let β be the multiple of κ that induces ds^2 . We compute

$$4ds_{j(x)}^{2}(\xi, \eta) = 4ds_{x}^{2}(\operatorname{ad}(j)^{-1}\xi, \operatorname{ad}(j)^{-1}\eta)$$

$$= 4\beta(\frac{1}{2}(1 - \sigma_{x}) \operatorname{ad}(j)^{-1}\xi, \frac{1}{2}(1 - \sigma_{x}) \operatorname{ad}(j)^{-1}\eta)$$

$$= \beta((1 - \sigma_{x}) \operatorname{ad}(j)^{-1}\xi, (1 - \sigma_{x}) \operatorname{ad}(j)^{-1}\eta)$$

$$= \beta(\operatorname{ad}(j)^{-1}\xi, \operatorname{ad}(j)^{-1}\eta) = \beta(\xi, \eta),$$

which is independent of $j \in J$. Thus $ds^2(\xi,\eta)$ is constant on J(x). However (8.17a) says that the Lie algebra $[\mathfrak{p}_0,\mathfrak{p}_0]$ of J orthogonally projects onto \mathfrak{m} . Thus J(x) is open in M. Now choose a basis $\{\xi_1,\dots,\xi_n\}$ of \mathfrak{p}_0 . We have just checked that the $ds^2(\xi_i,\xi_j)$ are constant on the open set $J(x) \subset M$. Now $(1-\sigma_x)\mathfrak{p}_0=\mathfrak{m}$ shows that $\{\xi_1,\dots,\xi_n\}$ is a global frame on J(x). Thus Corollary 4.15 says that there is an absolute parallelism ψ on the connected manifold $J_0(x)$, consistent with ds^2 there, for which the ξ_i are parallel. Lemma 6.4 says that (M,ds^2) has an absolute parallelism ϕ_0 such that the $\xi|_{J_0(x)},\xi\in\mathfrak{p}_0$, are ϕ_0 -parallel on $J_0(x)$. By analyticity, or because ϕ_0 -parallel fields are Killing vector fields, now \mathfrak{p}_0 is the LTS of all ϕ_0 -parallel vector fields on M.

If $r = gJ \in G/J$, we define $\mathfrak{p}_{\tau} = \mathrm{ad}\,(g)\mathfrak{p}_0$ as specified. Then $\phi_{\tau} = g(\phi_0)$ is an absolute parallelism on M consistent with ds^2 , and its LTS is $\mathrm{ad}\,(g)\mathfrak{p}_0 = \mathfrak{p}_{\tau}$. This gives us our 7-parameter family $\{\phi_{\tau}\}$ of absolute parallelisms consistent with ds^2 .

We check that the original absolute parallelism ϕ on M is contained in the family $\{\phi_r\}$. Let Aut (g) denote Aut_R (g) in cases 1 and 2, and Aut_C (g) in case 3. Then Aut (g)/Int (g) is the group of order 6 given by $e^3 = s^2 = 1$, $ses^{-1} = e^{-1}$. Here s represents the component of σ_x , and e the component of ε . Thus ε_x (or ε_x' in case 3) is in a component represented by e, es, ses^{-1} or se. Now there are isometries $g, b \in G$ of (M, ds^2) such that $\varepsilon_x = ad(b) \cdot \varepsilon \cdot ad(g)^{-1}$ and either b = 1 or $b = s_x$ symmetry. Let $r = gJ \in G/J$. Then $\mathfrak{p} = \varepsilon_x^{-1}(\mathfrak{m}) = ad(g) \cdot \varepsilon^{-1} \cdot ad(b^{-1})(\mathfrak{m}) = ad(g) \varepsilon^{-1}(\mathfrak{m}) = ad(g) \mathfrak{p}_0 = \mathfrak{p}_r$. Thus $\phi = \phi_r$.

Assertion (ii) on the structure of J and $\{\phi_r\}$ is immediate from the definition of J. We have just proved assertions (iii) and (iv). Now (i), (v) and (vi) remain.

Let $N = G_0/J_0$, and let β be the multiple of the Killing form of $\mathfrak g$ which induces ds^2 on M. Then β induces a metric du^2 on N, and ε induces an isometry of (N, du^2) onto (M, ds^2) . If $g \in G$, we notice that $\mathrm{ad}(g)^2$ is an inner automorphism of $\mathfrak g$. If h is an isometry of (N, du^2) , it follows that $ad(h)^2$ is an inner automorphism of $\mathfrak g$. Thus $\mathfrak p_0 \neq \mathrm{ad}(g)\varepsilon^{-1}(\mathfrak p_0)$ whenever $g \in G_0$, for $(\mathrm{ad}(g)\varepsilon^{-1})^2$ is outer on $\mathfrak g$. If J meets s_xG_0 , say $gs_x \in J$ where $g \in G_0$, then

$$\mathfrak{p}_0 = \operatorname{ad}(g)\sigma_x(\mathfrak{p}_0) = \operatorname{ad}(g)\sigma_x\varepsilon^{-1}(\mathfrak{m}) = \operatorname{ad}(g)\varepsilon\sigma_x(\mathfrak{m})$$
$$= \operatorname{ad}(g)\varepsilon(\mathfrak{m}) = \operatorname{ad}(g)\varepsilon^2(\mathfrak{p}_0) = \operatorname{ad}(g)\varepsilon^{-1}(\mathfrak{p}_0) ,$$

which was just seen impossible. Thus

(8.18a)
$$J$$
 does not meet the component s_xG_0 of G .

The Int (g)-normalizer of \mathfrak{m} is the connected group ad $(K_0 \cup (-I_8)K_0)$, so the normalizer of $\mathfrak{p}_0 = \varepsilon^{-1}(\mathfrak{m})$ in Int (g) is ad $(J_0 \cup (-I_8)J_0)$. Thus

(8.18b)
$$J \cap G_0 = \begin{cases} \{\pm I_8\} \cdot J_0 \text{ (2 components) in cases 1 and 3,} \\ J_0 \text{ (connected) in case 2.} \end{cases}$$

Note $\nu \in J$ in case 3. Denote

$$J' = \{\pm I_8\} \cdot J_0$$
 in cases 1 and 2, and $J' = \{\pm I_8, \pm \nu\} \cdot J_0$ in case 3.

J' meets one of the two components of G in case 1, and meets two of the four components of G in cases 2 and 3. Thus $G/J'G_0$ has order 2. But (8.18a) says that G/JG_0 has order ≥ 2 . As $J' \subset J$, now $JG_0 = J'G_0$. However, (8.18b) says $J \cap G_0 = J' \cap G_0$. We conclude J = J', thus proving assertion (i) on the structure of J.

In view of (i), G/J is the disjoint union of two copies of $G_0/(I \cap G_0) = G_0/\{\pm I_8\} \cdot J_0$. Since the isometry $(N, du^2) \to (M, ds^2)$ induced by ε , where $N = G_0/J_0$, induces a diffeomorphism of $G_0/\{\pm I_8\} \cdot J_0$ onto $M/\{\pm I_8\}$. Assertion (v) follows.

Recall that the Lie algebra $\varepsilon^{-1}(t)$ of J is the image of the spin representation of t. Thus

(8.19a)
$$J_0 = \text{Spin}(7), \text{Spin}(3, 4), \text{Spin}(7, C) \text{ in cases } 1, 2, 3.$$

Recall also that $\mathfrak{f} \cap \varepsilon^{-1}(\mathfrak{f}) = \mathfrak{g}^{\epsilon}$ algebra of type G_2 . Let G_2 denote the compact connected group of that type, G_2^C the complex connected group of that type, and G_2^* the analytic subgroup of G_2^C which is the noncompact real form. Now

$$(8.19b) (J \cap K)_0 = G_2, G_2^{\sharp}, G_2^{\mathfrak{C}} \text{ in cases } 1, 2, 3.$$

Now count dimensions, or recall from (8.17a), to see that

$J_0(x)$ is open in M.

In case 1, where J_0 is compact, this give us $J_0(x) = M$.

In cases 2 and 3, we choose a basis $\{e_1, \dots, e_8\}$ of the ambient space R^8 or C^8 of M such that the e_k are mutually orthogonal, each $||e_k||^2 = |b(e_k, e_k)| = 1$, and

case 2:
$$U = e_1 R + e_2 R + e_3 R + e_4 R$$
 is positive definite, and $V = e_5 R + e_6 R + e_7 R + e_8 R$ is negative definite;

case 3:
$$U = e_1R + \cdots + e_8R$$
 is positive definite, and so $V = iU = ie_1R + \cdots + ie_8R$ is negative definite.

Then

$$e_1 \in M = \{u + v : u \in U, v \in V \text{ and } ||u||^2 - ||v||^2 = 1\}.$$

Given real $r > s \ge 0$ with $r^2 - s^2 = 1$ we define

$$S_{r,s} = \{u + v : u \in U, v \in V, ||u||^2 = r^2 \text{ and } ||v||^2 = s^2\}.$$

Now M is the disjoint union of the $S_{r,s}$.

As J_0 is noncompact semisimple, its Lie algebra has an element $w \neq 0$ which is diagonable with all eigenvalues real. The eigenvalues come in pairs $\{h, -h\}$ by (8.19a). Renormalizing w, now we may assume $\{e_1, \dots, e_8\}$ chosen so that

case 2:
$$w(e_1 + e_5) = e_1 + e_5$$
 and $w(e_1 - e_5) = -(e_1 - e_5)$;

case 3:
$$w(e_1 + ie_2) = e_1 + ie_2$$
 and $w(e_1 - ie_2) = -(e_1 - ie_2)$.

Now by direct calculation

$$\exp(tw) \cdot e_1 \in S_{\cosh(t), \sinh(t)}, \quad t \geq 0$$
.

Thus $J_0(e_1)$ meets each of the sets $S_{r,s}$.

Let $H = \{g \in J_0 : g(U) = U\}$. Then also g(V) = V for $g \in H$, and H is the maximal compact subgroup

Spin
$$(3)$$
 · Spin (4) in case 2, Spin (7) in case 3.

In case 2 the Spin (3)-factor on H is transitive on the sphere $||u||^2 = r^2$ in U, and the Spin (4)-factor is transitive on the sphere $||v||^2 = s^2$ in V. Thus H is transitive on each $S_{\tau,s}$. As $J_0(e_1)$ meets each $S_{\tau,s}$, now $J_0(e_1) = M$.

In case 3, H is transitive on the sphere $||u||^2 = r^2$ in U, and the subgroup H_1 preserving e_1 is G_2 by (8.19b). Thus H_1 is transitive on the spheres $||v_1||^2 = s_1^2$ in $i(e_2R + e_3R + \cdots + e_8R)$. If $z \in S_{r,s}$, then some element of H carries z to $z' = re_1 + i(ae_1 + be_2)$ where $b \ge 0$ and $a^2 + b^2 = s^2$. However, $z' \in M$ says

 $(r+ia)^2+(ib)^2=1$ so ra=0; as r>0 now a=0; thus $z'=re_1+ise_2$. Choose $t\geq 0$ such that $r=\cosh(t)$, so $s=\sinh(t)$; now

$$z' = \cosh(t)e_1 + i\sinh(t)e_2 = \exp(tw) \cdot e_1.$$

Thus $J_0(e_1) = M$, and (vi) is proved, completing the proof of Theorem 8.16.

9. Global classification of reductive parallelisms

Theorems 7.6 and 8.16 completely describe the possibilities for the (M_i, ϕ_i, ds_i^2) in Theorem 6.7. Splitting the flat factor as in the proof of Proposition 7.5, we thus reformulate Theorem 6.7 as follows.

- **9.1. Theorem.** Let (M, ϕ, ds^2) be a connected manifold with absolute parallelism and consistent pseudo-riemannian metric such that ϕ is of reductive type relative to ds^2 . Then there exist
 - (1) unique integers $t \ge u \ge 0$,
- (2) simply connected globally symmetric pseudo-riemannian manifolds $(M_i, ds_i^2), -1 \le i \le t$, unique up to global isometry and permutations of $\{1, 2, \dots, u\}$ and $\{u + 1, u + 2, \dots, t\}$, and
- (3) absolute parallelisms ϕ_i on M_i consistent with ds_i^2 and unique up to global isometry, such that the (M_i, ϕ_i, ds_i^2) and

$$(\tilde{M}, \tilde{\phi}, d\sigma^2) = (M_{-1}, \phi_{-1}, ds_{-1}^2) \times \cdots \times (M_t, \phi_t, ds_t^2)$$

have the following properties:

- (i) For $-1 \le i \le u$, M_i is the simply connected group for a real Lie algebra \mathfrak{p}_i , ϕ_i is its absolute parallelism of left translation, and ds_i^2 is the biinvariant metric induced by a nondegenerate invariant bilinear form b_i on \mathfrak{p}_i . Here $(\mathfrak{p}_{-1}, b_{-1})$ is obtained as in (7.2) and (7.4a), and \mathfrak{p}_{-1} has center $\mathfrak{f}_{-1} = \mathfrak{f}_{-1}^{-1}$ relative to b_{-1} ; so (M_{-1}, ds_{-1}^2) is flat. \mathfrak{p}_0 is commutative, so (M_0, ds_0^2) is flat and ϕ_0 is its euclidean parallelism. If $1 \le i \le u$, then \mathfrak{p}_i is simple and b_i is a nonzero real multiple of its real Killing form, so (M_i, ds_i^2) is irreducible.
- (ii) For $u + 1 \le i \le t$, M_i is one of the symmetric coset spaces G_0/K_0 given by

$$SO(8)/SO(7)$$
 ordinary 7-sphere,
 $SO(4,4)/SO(3,4)$ indefinite 7-sphere, or
 $SO(8,C)/SO(7,C)$ complexified 7-sphere;

 ds_i^2 is induced by a nonzero real multiple of the real Killing form of G_0 , and ϕ_i comes from a triality automorphism of g as in Theorem 8.16.

- (iii) Every $x \in M$ has a neighborhood U and an isometry $h: (U, ds^2) \to (\tilde{U}, d\sigma^2), \tilde{U}$ open in \tilde{M} , such that h sends $\phi|_U$ to $\tilde{\phi}|_{\tilde{U}}$.
- (iv) If ϕ is complete, i.e., if (M, ds^2) is complete, then there is a pseudoriemannian covering $\pi: (\tilde{M}, d\sigma^2) \to (M, ds^2)$ which sends $\tilde{\phi}$ to ϕ .

We draw two corollaries of Theorems 3.8, 7.6 and 8.16 which complement the statement of Theorem 9.1.

- **9.2. Corollary.** Let $(\tilde{M}, \tilde{\phi}, d\sigma^2)$ be a complete simply connected pseudoriemannian manifold with consistent absolute parallelism of reductive type.
- (i) Then the group of all isometries g of $(\tilde{M}, d\sigma^2)$ such that $g(\tilde{\phi}) = \tilde{\phi}$ is transitive on \tilde{M} .
- (ii) If $(\tilde{M}, d\sigma^2)$ has no euclidean (flat) factor, and $\tilde{\psi}$ is another absolute parallelism consistent with $d\sigma^2$, then $(\tilde{M}, d\sigma^2)$ has an isometry g such that $(g\tilde{\psi}) = \tilde{\phi}$.
- *Proof.* $(\tilde{M}, \tilde{\phi}, d\sigma^2)$ is the product of the (M_i, ϕ_i, ds_i^2) , $-1 \le i \le t$, as in Theorem 9.1. If $-1 \le i \le u$ there, then the left translations of the group manifold M_i are transitive and preserve ϕ_i . If $u+1 \le i \le t$, then the required transitivity is the transitivity of the group J in Theorem 8.16. Thus (i) holds for each (M_i, ϕ_i, ds_i^2) , and thus for $(\tilde{M}, \tilde{\phi}, d\sigma^2)$. Similarly, (ii) follows from Proposition 8.2 and Theorem 8.16.
- **9.3. Corollary.** Let ds^2 be of signature (n-q,q) or (q,n-q), $0 \le q \le 2$, in Theorem 9.1.
- (i) M_{-1} is reduced to a point, i.e., the parallelism on the flat factor of $(\tilde{M}, d\sigma^2)$ is euclidean.
- (ii) At most q of the simple group manifolds M_i $(1 \le i \le u)$ are non-compact. Each noncompact one is the universal covering group of SL(2, R).
 - (iii) Each of the quadrics M_i $(u + 1 \le i \le t)$ is an ordinary 7-sphere.
- (iv) If $\tilde{\psi}$ is any absolute parallelism on \tilde{M} consistent with $d\sigma^2$, then $(\tilde{M}, d\sigma^2)$ has an isometry g such that $g(\tilde{\psi}) = \tilde{\phi}$.
- *Proof.* If M_{-1} is not reduced to a point, then \mathfrak{p}_{-1} is nonabelian by the normalization $\mathfrak{F}_{-1}=\mathfrak{F}_{-1}^1$ (rel. b_{-1}) of Theorem 9.1 (i). Then the 3-form τ in the construction (7.2) of \mathfrak{p}_{-1} must be nonzero. But τ is a 3-form on an r-dimensional vector space where ds_{-1}^2 has signature (r,r). The latter implies $r\leq 2$ so $\tau=0$. Assertion (i) follows.

Let the simple group manifold M_i $(1 \le i \le u)$ be noncompact, and $\mathfrak{p}_i = \mathfrak{l}_i$ $+ \mathfrak{q}_i$ the decomposition of its Lie algebra under a Cartan involution. If $l_i = \dim \mathfrak{l}_i$ and $q_i = \dim \mathfrak{q}_i$, then ds_i^2 has signature (l_i, q_i) or (q_i, l_i) . Thus either $l_i \le 2$ or $q_i \le 2$. If $l_i \le 2$, then \mathfrak{l}_i has no simple ideal, so \mathfrak{l}_i is 1-dimensional by simplicity of \mathfrak{p}_i ; then R-irreducibility of \mathfrak{l}_i on \mathfrak{q}_i implies $q_i \le 2$. If $q_i \le 2$, the symmetric space of noncompact type associated to \mathfrak{p}_i must have constant curvature and therefore must be the real hyperbolic plane, so \mathfrak{p}_i is the Lie algebra of SL(2,R). Each such M_i contributes (1,2) or (2,1) to the signature of ds^2 , so at most q occur. Assertion (ii) is proved.

The quadrice M_i $(u + 1 \le i \le t)$ have ds_i^2 of signature

$$SO(8)/SO(7)$$
: (7,0) or (0,7);
 $SO(4,4)/SO(3/4)$: (3,4) or (4,3);
 $SO(8,C)/SO(7,C)$: (7,7).

The last two quadrics are excluded because q < 3. That leaves the 7-sphere, proving assertion (iii).

Let $\tilde{\psi}$ be another absolute parallelism on \tilde{M} consistent with $d\sigma^2$. Then $\tilde{\psi}$ is of reductive type by Lemma 6.2, and assertion (i) for $(\tilde{M}, \tilde{\psi}, d\sigma^2)$ shows $\tilde{\psi}$ is euclidean on the flat factor of $(\tilde{M}, d\sigma^2)$. Thus Lemma 6.2 shows $(\tilde{M}, \tilde{\psi}, d\sigma^2)$ to be the product of the (M_i, ψ_i, ds_i^2) for certain ψ_i with $\psi_0 = \phi_0$. Now assertion (iv) follows from Corollary 9.2. q.e.d.

Our goal now is a complete description of the possibilities for the coverings of Theorem 9.1 (4).

- **9.4. Lemma.** Let $\pi: (M', d\sigma^2) \to (M, ds^2)$ be a pseudo-riemannian covering, and ϕ an absolute parallelism on M consistent with ds^2 . Let $\mathfrak p$ be the LTS of ϕ -parallel vector fields on M, and $\mathfrak p'$ the space of all fields ξ' on M' with $\pi_*\xi'$ defined and in $\mathfrak p$.
- (i) There is a unique absolute parallelism ϕ' on M' such that $\pi(\phi') = \phi$. It is consistent with $d\sigma^2$, and \mathfrak{p}' is its LTS of parallel vector fields.
- (ii) If $\xi' \in \mathfrak{p}'$ and γ is a deck transformation of the covering, then $\gamma_* \xi' = \xi'$. Proof. Assertion (i) is immediate with ϕ' defined by the condition that \mathfrak{p}' be its LTS. Then $\pi_* \colon \mathfrak{p}' \cong \mathfrak{p}$, so as $\pi \circ \gamma = \pi$ implies $\pi_* \gamma_* \xi' = \pi_* \xi'$ we get $\gamma_* \xi' = \xi'$.
- **9.5. Proposition.** Let $(M', \phi', d\sigma^2)$ be a connected pseudo-riemannian manifold with consistent absolute parallelism, and Z be the Lie group of all isometries g of $(M', d\sigma^2)$ such that if ξ' is ϕ' -parallel then $g_*\xi' = \xi'$.
 - (i) If $1 \neq g \in \mathbb{Z}$, then g has no fixed point on M'.
- (ii) A subgroup of Z is discrete if, and only if, it acts freely and properly discontinuously on M'.
- (iii) The normal pseudo-riemannian coverings $\pi: (M', d\sigma^2) \to (M, ds^2)$ such that $\pi(\phi')$ is a well-defined absolute parallelism on M are just the coverings $M' \to D \setminus M'$ where D is a discrete subgroup of Z.

Proof. Let $g \in Z$ have a fixed point $x \in M'$. The tangent space M'_x consists of all ξ'_x with ξ' a ϕ' -parallel vector field. As each $g_*\xi' = \xi'$ now $g_*: M'_x \to M'_x$ identity map. Since g is an isometry and M' is connected, this shows g = 1, and hence (i) is proved.

Choose a basis $\{\xi_1', \dots, \xi_n'\}$ of the space \mathfrak{p}' of parallel fields. Let $\{\theta^i\}$ be the dual 1-forms. If $g \in Z$ each $g^*\theta^i = \theta^i$, so g is an isometry of the riemannian metric $d\rho^2 = \Sigma(\theta^i)^2$. The topology on Z is the compact-open topology from its action on M'. Thus a subgroup $D \subset Z$ is discrete if and only if it acts properly discontinuously on M'; it acts freely by (i). Hence (ii) is proved.

If $\pi(\phi') = \phi$ absolute parallelism on M, then ϕ is consistent with ds^2 and we are in the situation of Lemma 9.4. The covering being normal, $M = D \setminus M'$ where D is a group of homeomorphisms acting freely and properly discontinuously on M'. The elements of D are isometries of $(M', d\sigma^2)$ because π is pseudoriemannian. Now $D \subset Z$ by Lemma 9.4, and D is discrete there by (ii). Conversely let $D \subset Z$ discrete subgroup. Then D acts freely and properly

discontinuously on M' by (ii), so $\pi: M' \to D \setminus M' = M$ is a normal covering. Since D acts by isometries, π is pseudo-riemannian and $\pi(\phi')$ is a well-defined parallelism by definition of Z. Hence (iii) is proved. q.e.d.

We collect the specific information needed to apply Proposition 9.5 in the complete reductive case.

- **9.6. Lemma.** Let $(\tilde{M}, \tilde{\phi}, d\sigma^2)$ be a simply connected manifold with complete absolute parallelism of reductive type and consistent pseudo-riemannian metric. Let $Z(\tilde{M}, \tilde{\phi}, d\sigma^2)$ denote the Lie group of all isometries of $(\tilde{M}, d\sigma^2)$ which preserve every $\tilde{\phi}$ -parallel vector field. Decompose $(\tilde{M}, \tilde{\phi}, d\sigma^2)$ as the product of the (M_i, ϕ_i, ds_i^2) , as in Theorem 9.1.
 - (i) $Z(\tilde{M}, \tilde{\phi}, d\sigma^2)$ is the product of the $Z(M_i, \phi_i, ds_i^2)$.
- (ii) If M_i is a group manifold (i.e., $-1 \le i \le u$), then $Z(M_i, \phi_i, ds_i^2)$ is its group of left translations.
- (iii) If M_i is a quadric (i.e., $u+1 \le i \le t$), then $Z(M_i, \phi_i, ds_i^2) = \{\pm I_8\}$. Proof. Let $g \in Z(\tilde{M}, \tilde{\phi}, d\sigma^2)$. Then g acts trivially on $\tilde{\mathfrak{p}} = \mathfrak{p}_{-1} \oplus \mathfrak{p}_0 \oplus \mathfrak{p}_1 \oplus \cdots \oplus \mathfrak{p}_t$, so it preserves each ideal \mathfrak{p}_i . Thus $g = g_{-1} \times g_0 \times \cdots \times g_t$ where $g_i \in Z(M_i, \phi_i, ds_i^2)$, and (i) is proved.

Let M_i be a group manifold, and L_i the group of its left translations. Then $L_i \subset Z(M_i, \phi_i, ds_i^2)$. If $g \in Z(M_i, \phi_i, ds_i^2)$, we have $h \in L_i$ such that hg(1) = 1. Since hg is an isometry and acts trivially on \mathfrak{p}_i , hg = 1, and thus $g = h^{-1} \in L_i$, proving (ii).

Let M_i be a quadric. Then the group G_i of all isometries of (M_i, ds_i^2) has Lie algebra $\mathfrak{g}_i = [\mathfrak{p}_i, \mathfrak{p}_i] + \mathfrak{p}_i$. Let $g \in Z(M_i, \phi_i, ds_i^2)$ and $\gamma = \mathrm{ad}(g) \in \mathrm{Aut}_R(\mathfrak{g}_i)$. Then γ is trivial on \mathfrak{p}_i , and hence also trivial on $[\mathfrak{p}_i, \mathfrak{p}_i]$, so $\gamma = 1$. Now g centralizes the identity component of G_i . A glance at Theorem 8.16 shows that this forces $g = \pm I_s$, proving (iii). q.e.d.

Now we combine Theorem 9.1, Proposition 9.5 and Lemma 9.6, obtaining the classification of complete parallelisms of reductive type.

- **9.7. Theorem.** The complete connected pseudo-riemannian manifolds with consistent absolute parallelism of reductive type are precisely the (M, ϕ, ds^2) constructed as follows.
- Step 1. $(M_{-1}, \phi_{-1}, ds_{-1}^2)$. Choose an integer $r \geq 0$, a real vector space to of dimension r, and an alternating trilinear form $\tau \in \Lambda^3(\mathbb{W}^*)$ which is nondegenerate on to in the sense that if $0 \neq w \in \mathbb{W}$, then $\tau(w, \mathbb{W}, \mathbb{W}) \neq 0$. Let $\mathfrak{p}_{-1} = \mathfrak{g}(\tau, \mathbb{W})$ as in construction (7.2). Let b_{-1} be the nondegenerate invariant bilinear form (7.4a) on \mathfrak{p}_{-1} . M_{-1} is the simply connected Lie group for $\mathfrak{p}_{-1}, \phi_{-1}$ is its parallelism of left translation, and ds_{-1}^2 is the bi-invariant metric induced by b_{-1} . Note that ds_{-1}^2 has signature $(p_{-1}, q_{-1}) = (r, r)$. Let Z_{-1} denote the group of left translations on M_{-1} .
- Step 2. (M_0, ϕ_0, ds_0^2) . Choose integers $p_0, q_0 \ge 0$. M_0 is the real vector group of dimension $p_0 + q_0, \phi_0$ is its (euclidean) parallelism of (left) translation, and ds_0^2 is a translation-invariant metric of signature (p_0, q_0) . Let Z_0 denote the group of all translations.

- Step 3. The (M_i, ϕ_i, ds_i^2) for $1 \le i \le u$. Choose an integer $u \ge 0$. If $1 \le i \le u$, let \mathfrak{p}_i be a simple real Lie algebra, M_i the simply connected group for \mathfrak{p}_i, ϕ_i its parallelism of left translation, and ds_i^2 the bi-invariant metric induced by a nonzero real multiple of the Killing form of \mathfrak{p}_i . Let $(\mathfrak{p}_i, \mathfrak{q}_i)$ denote the signature of ds_i^2 , and Z_i the group of left translations of M_i .
- Step 4. The (M_i, ϕ_i, ds_i^2) for $u + 1 \le i \le t$. Choose an integer $t \ge u$. If $u + 1 \le i \le t$, let $M_i = G_i^0/K_i^0$ be one of

$$SO(8)/SO(7)$$
, $SO(4,4)/SO(3,4)$, $SO(8,C)/SO(7,C)$.

 ds_i^2 is the invariant metric induced by a nonzero real multiple of the real Killing form of the Lie algebra \mathfrak{g}_i of G_i^0 . Let σ be the conjugation of \mathfrak{g}_i by the symmetry at $1 \cdot K_i^0$, θ a Cartan involution of \mathfrak{g}_i which commutes with σ , and ε a triality automorphism of order 3 on \mathfrak{g}_i which commutes with θ and has a fixed point set of type G_2 . Then ϕ_i is the absolute parallelism on M_i whose LTS is $\mathfrak{p}_i = \{\varepsilon^{-1}(v) : v \in \mathfrak{g}_i \text{ and } \sigma(v) = -v\}$. Let (p_i, q_i) denote the signature of ds_i^2 , and Z_i the center $\{\pm I_i\}$ of the isometry group of (M_i, ds_i^2) .

- Step 5. $(\tilde{M}, \tilde{\phi}, d\sigma^2)$. Define $\tilde{M} = M_{-1} \times M_0 \times \cdots \times M_t$, $\tilde{\phi} = \phi_{-1} \times \phi_0 \times \cdots \times \phi_t$ and $d\sigma^2 = ds_{-1}^2 \times ds_0^2 \times \cdots \times ds_t^2$. Let $p = \sum p_i$ and $q = \sum q_i$; then $d\sigma^2$ has signature (p, q). Denote $Z = Z_{-1} \times Z_0 \times \cdots \times Z_t$.
- Step 6. $(M, \phi, ds^2) = D \setminus (\tilde{M}, \tilde{\phi}, d\sigma^2)$. Let $D \subset Z$ be a discrete subgroup, $M = D \setminus \tilde{M}$ quotient manifold, ϕ parallelism on M induced by $\tilde{\phi}$, and ds^2 the consistent pseudo-riemannian metric of signature (p, q) on M induced by $d\sigma^2$.

We close by examining the conditions on (M, ϕ, ds^2) under which (M, ds^2) may be globally symmetric, compact, riemannian, etc. Note that homogeneity is automatic: if (M, ϕ, ds^2) is complete and connected, then every ϕ -parallel vector field integrates to a 1-parameter group of isometries, and those isometries generate a transitive group.

9.8. Corollary. The connected globally symmetric pseudo-riemannian manifolds with consistent absolute parallelism of reductive type are precisely the (M, ϕ, ds^2) constructed in Theorem 9.7 with the additional condition: for $-1 \le i \le u$ the projection of D to Z_i consists of translations by elements of the center of the group M_i .

Remark. Here note that M_{-1} has center exp (w^*) , that M_0 is commutative, and that M_i has discrete center for $1 \le i \le u$.

Proof. Let $(M, \phi, ds^2) = D \setminus (\tilde{M}, \tilde{\phi}, d\sigma^2)$ in the notation of Theorem 9.7. Then (M, ds^2) is symmetric if, and only if, every symmetry s_x of $(\tilde{M}, d\sigma^2)$ induces a transformation of M. Thus the symmetry condition for (M, ds^2) is that every s_x permute the D-orbits, i.e., that every s_x normalize D in the isometry group of $(\tilde{M}, d\sigma^2)$. Let D_i be the projection of $D \subset Z = Z_{-1} \times \cdots \times Z_i$ to Z_i . Then (M, ds^2) is symmetric if, and only if, each D_i is normalized by every symmetry of (M_i, ds^2) .

If $u + 1 \le i \le t$, then $Z_i = \{\pm I_s\}$, center of the isometry group of (M_i, ds_i^2) , so D_i is centralized by every symmetry.

- Let $-1 \le i \le u$. If $x, g \in M_i$, then the symmetry of (M_i, ds_i^2) at x conjugates left translation by g to right translation by $x^{-1}gx$. Thus D_i is normalized by the symmetries if, and only if, it consists of translation by central elements.
- **9.9. Corollary.** The compact connected pseudo-riemannian manifolds with consistent absolute parallelism of reductive type are precisely the (M, ϕ, ds^2) of Theorem 9.7 such the both Z/D and $Z\backslash \tilde{M}$ are compact. $Z\backslash \tilde{M}$ is compact if, and only if, each quadric M_i $(u+1\leq i\leq t)$ is an ordinary 7-sphere SO(8)/SO(7). Z has a discrete subgroup D such that Z/D is compact if, and only if, the 3-form τ of the construction of the Lie algebra $\mathfrak{p}_{-1}=\mathfrak{g}(\tau,\mathfrak{w})$ of M_{-1} can be chosen with rational coefficients.

Proof. We have a fibration $M = D \setminus \tilde{M} \to Z \setminus \tilde{M}$ with fibre Z/D. The total space M is compact if, and only if, both fibre Z/D and base $Z \setminus \tilde{M}$ are compact.

 $Z\setminus \tilde{M}$ is the product of the $Z_i\setminus M_i$, hence is compact if and only if each $Z_i\setminus M_i$ is compact. If $-1\leq i\leq u$, then $Z_i\setminus M_i$ is reduced to a point, hence is compact. If $u+1\leq i\leq t$, then Z_i is finite, so $Z_i\setminus M_i$ is compact if and only if M_i is compact; the latter occurs only for $M_i=SO(8)/SO(7)$.

 $\mathfrak{p}_{-1}=\mathfrak{g}(\tau,\mathfrak{w})$ is a nilpotent Lie algebra, and has a basis with rational structure constants if and only if τ can be chosen with rational coefficients. The Lie algebra \mathfrak{p}_0 of M_0 is commutative. Now a theorem of Mal'cev [10] says that τ can be chosen rational if, and only if, $M_{-1}\times M_0$ has a discrete subgroup with compact quotient.

Suppose that τ can be chosen rational. Then $M_{-1} \times M_0$ has a discrete subgroup with compact quotient, and gives a left translation group E discrete in $Z_{-1} \times Z_0$ with compact quotient. If $1 \le i \le u$ with M_i noncompact, a theorem of Borel [2] provides a discrete subgroup of M_i with compact quotient, and its left translation group is a discrete subgroup $D_i \subset Z_i$ with Z_i/D_i compact. In the other cases Z_i is compact, and we take $D_i = \{1\}$. Then $D = E \times D_1 \times \cdots \times D_t$ is a discrete subgroup of Z with Z/D compact.

Conversely let $D \subset Z$ be a discrete subgroup with Z/D compact. Permute the M_i , $1 \leq i \leq u$, so that M_i is noncompact for $1 \leq i \leq v$ and compact for $v+1 \leq i \leq u$. As $Z_{v+1} \times \cdots \times Z_t$ is compact, we replace D with its projection to $Z' = Z_{-1} \times Z_0 \times \cdots \times Z_v$. Now Z' is a simply connected Lie group whose solvable radical is the nilpotent group $Z_{-1} \times Z_0$ and whose semisimple part $Z_1 \times \cdots \times Z_v$ has no compact factor. Thus a theorem of L. Auslander [1] says that $(Z_{-1} \times Z_0)/\{D \cap (Z_{-1} \times Z_0)\}$ is compact, so τ may be chosen with rational coefficients.

- **9.10. Corollary.** Let $(\tilde{M}, \tilde{\phi}, d\sigma^2)$ be a complete simply connected pseudoriemannian manifold with consistent absolute parallelism. Then the following conditions are equivalent.
- (i) $\tilde{\phi}$ is of reductive type relative to $d\sigma^2$, and $(\tilde{M}, \tilde{\phi}, d\sigma^2)$ has a compact globally symmetric quotient (M, ϕ, ds^2) .
 - (ii) $\tilde{\phi}$ is of reductive type relative to $d\sigma^2$ and, in the notation of Theorem 9.7,
 - (a) M_{-1} is reduced to a point,

- (b) if $1 \le i \le u$, the group M_i is compact,
- (c) if $u + 1 \le i \le t$, the quadric M_i is a 7-sphere.
- (iii) There is a riemannian metric $d\rho^2$ on \tilde{M} consistent with $\tilde{\phi}$. Then, if (M, ϕ, ds^2) is a quotient of $(\tilde{M}, \tilde{\phi}, d\sigma^2)$, $d\rho^2$ induces a riemannian metric dr^2 on M consistent with ϕ .

Proof. Assume (i) and let $(M, \phi, ds^2) = D \setminus (\tilde{M}, \tilde{\phi}, d\sigma^2)$. Let D_i be the projection of D to Z_i . If $-1 \le i \le u$, then D_i is central in Z_i by Corollary 9.8, and Z_i/D_i is compact by Corollary 9.9. That proves (a) and (b) of (ii); (c) follows directly from Corollary 9.9. Thus (i) implies (ii). For the converse let D be a lattice in M_0 .

Assume (ii). Let dr_0^2 be any translation-invariant riemannian metric on M_0 . For $1 \le i \le u$ let dr_i^2 be the metric induced by the negative of the Killing form of \mathfrak{p}_i . For $u+1 \le i \le t$ let dr_i^2 be the usual riemannian metric of constant curvature. Now $d\rho^2 = dr_0^2 \times \cdots \times dr_t^2$ has the required properties. Thus (ii) implies (iii). Corollary 9.3 provides the converse.

10. Appendix: Lie triple systems

We collect the basic facts on Lie triple systems.

A. Foundations: N. Jacobson's work ([7], or [8])

A Lie triple system (LTS) is a vector space m with a trilinear "multiplication" map

$$\mathfrak{m} \times \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$$
 denoted $(x, y, z) \mapsto [x \ y \ z]$

such that

$$[x \, x \, z] = 0 = [x \, y \, z] + [z \, x \, y] + [y \, z \, x],$$

$$[ab[x \ y \ z]] = [[a \ b \ x]yz] + [[b \ a \ y]xz] + [xy[a \ b \ z]].$$

If $\[\]$ is a Lie algebra and $\[\]$ $\[\]$ is a subspace such that $[[m, m], m] \subset m$, then m is a LTS under the composition $[x \ y \ z] = [[x, y], z]$; for then (10.1a) is anticommutative and the Jacobi identity, and (10.1b) follows by iteration of the Jacobi identity.

Let m be a LTS. By *derivation* of m we mean a linear map δ : m \rightarrow m such that

(10.2a)
$$\delta([x \ y \ z]) = [\delta(x) \ y \ z] + [x \ \delta(y) \ z] + [x \ y \ \delta(z)].$$

We denote

(10.2b) $\delta(m)$: the Lie algebra of derivations of m.

If $\{a_i\}, \{b_i\} \subset \mathfrak{m}$, we have the derivations $\sum \delta_{a_i,b_i}$ where $\delta_{a,b}(x) = [a\ b\ x]$ for $a,b,x\in\mathfrak{m}$. Derivations of that sort are *inner derivations*. Denote

(10.2c) $b_0(m)$: ideal in b(m) consisting of inner derivations.

Now consider the vector space

(10.3a)
$$h(m) = b(m) + m$$
 vector space direct sum

with the algebra structure

(10.3b)
$$[D+x,E+y] = ([D,E]+\delta_{x,y}) + (D(y)-E(x)) .$$

Then $\mathfrak{h}(\mathfrak{m})$ is a Lie algebra, called the *holomorph* of \mathfrak{m} because every derivation of \mathfrak{m} is the restriction of an inner derivation of $\mathfrak{h}(\mathfrak{m})$. Also, $\mathfrak{h}_0(\mathfrak{m}) = [\mathfrak{m}, \mathfrak{m}]$ inside $\mathfrak{h}(\mathfrak{m})$, so the Lie subalgebra of $\mathfrak{h}(\mathfrak{m})$ generated by \mathfrak{m} is the *standard Lie enveloping algebra* of \mathfrak{m} :

(10.3c)
$$l_s(m) = b_0(m) + m$$
 vector space direct sum.

Let m and n be LTS. If $f: m \rightarrow n$ is a linear map such that

$$f[x y z] = [f(x) f(x) f(z)],$$

then f is a homomorphism. If f is one-one and onto, i.e., if $f^{-1}: \mathfrak{n} \to \mathfrak{m}$ exists, then f^{-1} is a homomorphism and f is an isomorphism. If \mathfrak{l} is a Lie algebra and $f: \mathfrak{m} \to \mathfrak{l}$ is an injective LTS homomorphism such that $f(\mathfrak{m})$ generates \mathfrak{l} , then we say that \mathfrak{l} or (\mathfrak{l}, f) is a Lie enveloping algebra of \mathfrak{m} . Those always exist, for one has $\mathfrak{l}_s(\mathfrak{m})$.

The usual tensor algebra method provides a Lie enveloping algebra $\mathfrak{l}_{U}(\mathfrak{m})$ with the property: if (\mathfrak{l}, f) is any Lie enveloping algebra of \mathfrak{m} , then f extends to a Lie algebra homomorphism of $\mathfrak{l}_{U}(\mathfrak{m})$ onto \mathfrak{l} . Thus $\mathfrak{l}_{U}(\mathfrak{m})$ is called the universal Lie enveloping algebra of \mathfrak{m} . The case $\mathfrak{l} = \mathfrak{l}_{s}(\mathfrak{m})$ shows

$$I_U(\mathfrak{m}) = [\mathfrak{m}, \mathfrak{m}] + \mathfrak{m}$$
 vector space direct sum.

Also, if $n = \dim \mathfrak{m}$ then $\dim \mathfrak{l}_U(\mathfrak{m}) < n(n+1)/2$.

Let m be a LTS. By *subsystem* of m we mean a subspace $\mathfrak{f} \subset \mathfrak{m}$ such that $[\mathfrak{f} \mathfrak{f} \mathfrak{f}] \subset \mathfrak{f}$. By *ideal* in m we mean a subspace $\mathfrak{i} \subset \mathfrak{m}$ such that $[\mathfrak{i} \mathfrak{m} \mathfrak{m}] \subset \mathfrak{i}$ (and thus also $[\mathfrak{m} \mathfrak{m} \mathfrak{i}] \subset \mathfrak{i}$). The ideals of m are just the kernels $f^{-1}(0)$ of LTS homomorphisms $f \colon \mathfrak{m} \to \mathfrak{n}$, n variable; if \mathfrak{i} is an ideal then $\mathfrak{m}/\mathfrak{i}$ inherits a LTS structure from \mathfrak{m} , the projection $p \colon \mathfrak{m} \to \mathfrak{m}/\mathfrak{i}$ is a homomorphism, and $\mathfrak{i} = p^{-1}(0)$ kernel.

B. Structure: W. G. Lister's work [9]

Let $\mathfrak{m} \subset \mathfrak{l}$ be a LTS in Lie enveloping algebra. Then $[\mathfrak{m},\mathfrak{m}]$ and $[\mathfrak{m},\mathfrak{m}]+\mathfrak{m}$ are subalgebras of \mathfrak{l} , so $\mathfrak{l}=[\mathfrak{m},\mathfrak{m}]+\mathfrak{m}$. If $[\mathfrak{m},\mathfrak{m}]\cap\mathfrak{m}=0$, then one verifies that \mathfrak{l} has an automorphism σ whose +1 eigenspace is $[\mathfrak{m},\mathfrak{m}]$ and whose -1 eigenspace is \mathfrak{m} . This applies in particular to $\mathfrak{l}_s(\mathfrak{m})$ and to $\mathfrak{l}_v(\mathfrak{m})$, and it is the basic connection between LTS theory and symmetric space theory.

The derived series of a LTS m is the chain

$$\mathfrak{m} = \mathfrak{m}^{(0)} \supset \mathfrak{m}^{(1)} \supset \cdots \supset \mathfrak{m}^{(k)} \supset \cdots$$

of ideals of m defined by

(10.4b)
$$\mathfrak{m}^{(k+1)} = \left[\mathfrak{m} \, \mathfrak{m}^{(k)} \, \mathfrak{m}^{(k)}\right].$$

m is solvable if its derived series terminates in 0, i.e., if some $\mathfrak{m}^{(k)} = 0$. If m is solvable, then every Lie enveloping algebra of m is a solvable Lie algebra.

The radical of m is the span of the solvable ideals of m; it is the maximal solvable ideal in m, and we denote

(10.5a)
$$r(m)$$
: radical of m.

If r(m) = 0, then m is *semisimple*. In general there is a Levi decomposition

(10.5b)
$$\mathfrak{m} = \mathfrak{F} + \mathfrak{r}(\mathfrak{m})$$
, \mathfrak{F} semisimple, $\mathfrak{F} \cap \mathfrak{r}(\mathfrak{m}) = 0$.

The projection $\mathfrak{m} \to \mathfrak{m}/\mathfrak{r}(\mathfrak{m})$ maps $\mathfrak{F} \cong \mathfrak{m}/\mathfrak{r}(\mathfrak{m})$.

If m has no proper ideals, then m is *simple*. If [m m m] = 0, then m is *commutative*. If m is simple, then either it is semisimple and noncommutative, or it is 1-dimensional and commutative.

If \mathfrak{m}_1 and \mathfrak{m}_2 are LTS, then their *direct sum* is the LTS $\mathfrak{m}=\mathfrak{m}_1\oplus\mathfrak{m}_2$ given by

$$[x_1 + x_2 \quad y_1 + y_2 \quad z_1 + z_2] = [x_1y_1z_1] + [x_2y_2z_2]; \ x_i, y_i, z_i \in \mathfrak{m}_i \ .$$

Note that \mathfrak{m}_1 and \mathfrak{m}_2 are complementary ideals in \mathfrak{m} . Conversely, if \mathfrak{m} is a LTS with complementary ideals \mathfrak{m}_1 and \mathfrak{m}_2 , then $\mathfrak{m} \cong \mathfrak{m}_1 \oplus \mathfrak{m}_2$.

If m is semisimple, then $\mathfrak{m}=\mathfrak{m}_1\oplus\cdots\oplus\mathfrak{m}_t$ where the \mathfrak{m}_i are its distinct simple ideals; thus $\mathfrak{m}^{(1)}=\mathfrak{m}$, every derivation of m is inner, and every linear representation of m is completely reducible. Conversely, if $\{\mathfrak{m}_1,\cdots,\mathfrak{m}_t\}$ are noncommutative simple LTS, then $\mathfrak{m}_1\oplus\cdots\oplus\mathfrak{m}_t$ is semisimple.

The structure of semisimple LTS was just reduced to that of simple LTS. For the latter, let $\mathfrak{m} \subset \mathfrak{l}_{v}(\mathfrak{m})$ be a noncommutative simple LTS in its universal Lie enveloping algebra. Then there are just two cases, as follows.

(10.6) If m is the LTS of a (necessarily simple) Lie algebra \mathfrak{k} , then $\mathfrak{l}_{v}(\mathfrak{m}) = \mathfrak{k} \oplus \mathfrak{k}$ in such a manner that

$$\mathfrak{m} = \{(x, -x) : x \in \mathfrak{f}\} \text{ and } [\mathfrak{m}, \mathfrak{m}] = \{(x, x) : x \in \mathfrak{f}\}.$$

Thus m is the -1 eigenspace of the involutive automorphism $(x, y) \mapsto (y, x)$ of $I_v(m)$.

(10.7) If m is not the LTS of a Lie algebra, then $I_U(m)$ is simple, and m is the -1 eigenspace of an involutive automorphism of $I_U(m)$.

Now the classification of simple LTS over an algebraically closed field is more or less identical to the classification of compact irreducible riemannian symmetric spaces.

Let m be a LTS. Then the center of m is

(10.8)
$$\mathfrak{z}(m) = \{x \in m : [x m m] = 0\}.$$

The representation theory of m coincides with that of $l_v(m)$. Thus the following conditions are equivalent.

- (10.9a) m has a faithful completely reducible linear representation.
- (10.9b) $l_U(m)$ has a faithful completely reducible linear representation, i.e., $l_U(m)$ is "reductive".
- (10.9c) $\mathfrak{l}_{v}(\mathfrak{m}) = \mathfrak{z} \oplus \mathfrak{z}$ where \mathfrak{z} is its center, \mathfrak{z} is semisimple, and $\mathfrak{z} = [\mathfrak{l}_{v}(\mathfrak{m}), \mathfrak{l}_{v}(\mathfrak{m})]$ derived algebra.
- (10.9d) $\mathfrak{m} = \mathfrak{z}(\mathfrak{m}) \oplus \mathfrak{m}^{\scriptscriptstyle (1)}$, and the derived LTS $\mathfrak{m}^{\scriptscriptstyle (1)} = [\mathfrak{m} \ \mathfrak{m} \ \mathfrak{m}]$ is semisimple.

Under the equivalent conditions (10.9) we say that \mathfrak{m} is *reductive*. From the corresponding Lie algebra situation, we say that a subsystem $\mathfrak{n} \subset \mathfrak{m}$ is *reductive in* \mathfrak{m} if the adjoint representation of $\mathfrak{l}_{v}(\mathfrak{m})$ restricts to a completely reducible representation of \mathfrak{n} . Thus

- (10,10a) m is reductive \Leftrightarrow m is reductive in m,
- (10.10b) if m is reductive, and n is reductive in m, then $\{x \in m : [x \text{ nn}] = 0\}$ is reductive in m.

C. Invariant bilinear forms

Now we introduce a notion of invariant bilinear form for LTS. That is the key to application of the theory of reductive LTS to the theory of pseudoriemannian symmetric spaces.

Let \mathcal{L} be a Lie algebra. Recall that invariant bilinear form on \mathcal{L} means a symmetric bilinear form b on \mathcal{L} such that b([x, y], z) = b(x, [y, z]). It then follows that

$$b(z, [[y, x], w]) = b([[x, y], z], w) = b(x, [[w, z], y])$$
.

The main example is the trace form

$$b_{\pi}(x, y) = \operatorname{trace} \pi(x)\pi(y)$$

of a linear representation π of \mathcal{I} . The algebra \mathcal{I} is reductive if, and only if, it has a nondegenerate trace form. However (3.7) shows that a non-reductive algebra might carry a nondegenerate invariant bilinear form.

Let m be a LTS. By invariant bilinear form on m we mean a symmetric bilinear form b such that

$$(10.11) b(z, [y x w]) = b([x y z], w) = b(x, [w z y]).$$

The preceding discussion shows that the restriction of an invariant bilinear form on a Lie enveloping algebra of m is an invariant bilinear form on m.

10.12. Lemma. Let m be a LTS, and b an invariant bilinear form on m.

- (i) The center $g = \{x \in \mathfrak{m} : [x \mathfrak{m} \mathfrak{m}] = 0\}$ and the derived system $\mathfrak{m}^{(1)} = [\mathfrak{m} \mathfrak{m} \mathfrak{m}] \text{ satisfy } b(g, \mathfrak{m}^{(1)}) = 0.$
 - (ii) If i is an ideal in m, then $\{x \in m : b(x, i) = 0\}$ is an ideal in m.
- (iii) If l is a Lie enveloping algebra of m in which $[m, m] \cap m = 0$, then l carries an invariant bilinear form b' (in the sense of Lie algebras) such that $b = b'|_{m}$.

Proof. For (i) note $b(\mathfrak{F}, \mathfrak{m}^{(1)}) = b(\mathfrak{F}, [\mathfrak{m} \mathfrak{m} \mathfrak{m}]) = b([\mathfrak{F} \mathfrak{m} \mathfrak{m}], \mathfrak{m}) = b(0, \mathfrak{m}) = \{0\}.$

For (ii) let $j = \{x \in m : b(x, i) = 0\}$. It is a linear subspace of m. If $i \in i$, $j \in j$ and $x, y \in m$, then

$$b([j \times y], i) = b(j, [i \times x]) \in b(j, i) = \{0\},$$

so $[j x y] \in \mathfrak{j}$.

For (iii) we define b' on $m \times m$ to agree with b; we define b'([m, m], m) = 0; and we define b' on $[m, m] \times [m, m]$ by

$$b'([x,y],[z,w]) = b([x\,y\,z],w) \qquad \text{for } x,y,z,w \in \mathfrak{m} \ .$$

That gives us a symmetric bilinear form b' on \mathfrak{l} such that $b = b'|_{\mathfrak{m}}$. Now we check that b' is invariant, i.e., that b'([p,q],r) = b'(p,[q,r]) for all $p,q,r \in \mathfrak{l}$. It suffices to assume that each of p,q,r is in $[\mathfrak{m},\mathfrak{m}] \cup \mathfrak{m}$ and go by cases.

If $p, q, r \in \mathbb{m}$, then $[p, q], [q, r] \in [\mathbb{m}, \mathbb{m}]$ so b'([p, q], r) = 0 = b'(p, [q, r]).

If $p, q \in m$ and r = [z, w] with $z, w \in m$, then b'([p, q], r) = b'([p, q], [z, w])= $b([p \ q \ z], w) = b(p, [w \ z \ q]) = b(p, [q, [z, w]]) = b'(p, [q, r])$, which takes care of the case $p, q \in m$ and $r \in [m, m]$, and the cases $p, r \in m$ and $q \in [m, m]$, and $q, r \in m$ and $p \in [m, m]$, follow immediately.

If $p \in m$ and $q, r \in [m, m]$, then $[p, q] \in m$ so b'([p, q], r) = 0, and $[q, r] \in [m, m]$ so b'(p, [q, r]) = 0. The cases $q \in m$ and $p, r \in [m, m]$, and $r \in m$ and $p, q \in [m, m]$, follow similarly.

Finally, let p = [s, t], q = [x, y] and r = [z, w] with $s, t, x, y, z, w \in m$. Note [p, q] + [y, [p, x]] + [x, [y, p]] = 0 and [q, r] + [[r, x], y] + [[y, r], x] = 0. Using the invariance already checked, now

$$b'([p,q],r) = b'([[p,x],y],r) - b'([[p,y],x],r)$$

$$= b'([p,x],[y,r]) - b'([p,y],[x,r])$$

$$= b'(p,[x,[y,r]]) - b'(p,[y,[x,r]])$$

$$= b'(p,[q,r]) . q.e.d.$$

Suppose that m is a LTS and b is a nondegenerate invariant bilinear form. Then $x \in \mathfrak{F} \Leftrightarrow b([x \mathfrak{m} \mathfrak{m}], \mathfrak{m}) = 0 \Leftrightarrow b(x, [\mathfrak{m} \mathfrak{m} \mathfrak{m}]) = 0$. Thus

(10.13a)
$$\delta^{\perp} = nt^{(1)}$$
 relative to the form b, so

$$\dim \mathfrak{m} = \dim \mathfrak{F} + \dim \mathfrak{m}^{(1)}.$$

The analogous fact (that $\delta^{\perp} = [\mathfrak{I}, \mathfrak{I}]$) holds for nondegenerate invariant bilinear forms on Lie algebras.

We extend a theorem of Dieudonné from Lie algebras to LTS.

10.14. Proposition. Let \mathfrak{m} be a LTS, and b a nondegenerate invariant bilinear form on \mathfrak{m} . If \mathfrak{m} has no nonzero ideal i such that $[i \mathfrak{m} i] = 0$, then $\mathfrak{m} = \mathfrak{m}_1 \oplus \cdots \oplus \mathfrak{m}_t$ where the \mathfrak{m}_j are simple ideals, $b(\mathfrak{m}_j, \mathfrak{m}_k) = 0$ for $j \neq k$, and each $b|_{\mathfrak{m}_j \times \mathfrak{m}_j}$ is a nondegenerate invariant bilinear form.

Proof. Let \mathfrak{m}_i be a minimal ideal in \mathfrak{m} . From Lemma 10.12, $\mathfrak{m}_i^{\perp} = \{x \in \mathfrak{m}: b(x,\mathfrak{m}_i) = 0\}$ is an ideal, so also $\mathfrak{i} = \mathfrak{m}_i \cap \mathfrak{m}_i^{\perp}$ is an ideal. If $i, j \in \mathfrak{i}$ and $x, y \in \mathfrak{m}$, then

$$b([i \ x \ j], y) = b(i, [y \ j \ x]) \in b(i, i) = \{0\}$$
;

so [i m i] = 0 by nondegeneracy of b. Thus i = 0 by hypothesis. Now $m = m_1 \oplus m_1^{\perp}$. The proposition holds for m_1^{\perp} by induction on dim m. q.e.d.

Conversely, (10.6) and (10.7) show that every semisimple LTS carries a nondegenerate invariant bilinear form, in characteristic zero.

Now with (3.6) and (3.7) in mind, we introduce

- 10.15. Definition. Let \mathfrak{m} be a LTS, and b a nondegenerate invariant bilinear form on \mathfrak{m} . Suppose
 - (i) b is nondegenerate on the center of m, and
 - (ii) if i is an ideal in m such that [i m i] = 0, then i is central in m, i.e., [i m m] = 0.

Then we say that the pair (m, b) is of reductive type.

10.16. Theorem. Let m be a LTS, and b a nondegenerate invariant bilinear form on m such that (m,b) is of reductive type. Then m is reductive. Moreover

(10.17a)
$$\mathfrak{m} = \mathfrak{m}_0 \oplus \mathfrak{m}_1 \oplus \cdots \oplus \mathfrak{m}_t,$$

where

(10.17b) m_0 is the center of m and the other m_i are simple ideals,

(10.17c)
$$b(\mathfrak{m}_i,\mathfrak{m}_j) = 0 \quad \text{for} \quad i \neq j , \quad \text{and}$$

(10.17d) each
$$b|_{\mathfrak{m}_i \times \mathfrak{m}_i}$$
 is nondegenerate.

Conversely, if \mathfrak{m} is a reductive LTS over a field of characteristic zero, then it carries a nondegenerate invariant bilinear form b such that (\mathfrak{m},b) is of reductive type.

Proof. Let (\mathfrak{m}, b) be of reductive type, \mathfrak{m}_0 be the center of \mathfrak{m} , and $\mathfrak{m}' = \{x \in \mathfrak{m} : b(x, \mathfrak{m}_0) = 0\}$. As b is nondegenerate on \mathfrak{m}_0 , now $\mathfrak{m} = \mathfrak{m}_0 \oplus \mathfrak{m}'$ and $b = b_0 \oplus b'$. Let $i \subset \mathfrak{m}'$ be an ideal such that $[\mathfrak{i} \mathfrak{m}' \mathfrak{i}] = 0$. As $[\mathfrak{i} \mathfrak{m}_0 \mathfrak{i}] \subset [\mathfrak{m}_0 \mathfrak{m} \mathfrak{m}] = 0$, now $[\mathfrak{i} \mathfrak{m} \mathfrak{i}] = 0$. Thus $\mathfrak{i} \subset \mathfrak{m}_0$, so $\mathfrak{i} = 0$. Now Proposition 10.14 says $\mathfrak{m}' = \mathfrak{m}_1 \oplus \cdots \mathfrak{m}_t$ with $b' = b_1 \oplus \cdots \oplus b_t$. That proves (10.17).

Conversely let m be reductive. Then $\mathfrak{m}=\mathfrak{z}\oplus\mathfrak{z}$ where \mathfrak{z} is its center and \mathfrak{z} is semisimple. Let b'' be any nondegenerate bilinear form on \mathfrak{z} , and choose a nondegenerate invariant bilinear form b' on \mathfrak{z} ; then $b=b''\oplus b'$ is a nondegenerate invariant bilinear form on $\mathfrak{z}\oplus\mathfrak{z}=\mathfrak{m}$ and is nondegenerate on \mathfrak{z} . If $\mathfrak{t}\subset\mathfrak{m}$ is an ideal with $[\mathfrak{t}\mathfrak{m}\mathfrak{t}]=0$, then $[\mathfrak{t}\mathfrak{t}\mathfrak{t}]=0$, so $\mathfrak{t}\mathfrak{t}$ is solvable, whence $\mathfrak{t}\subset\mathfrak{z}$.

10.18. Corollary. Let \mathfrak{m} be a reductive LTS, and b a nondegenerate invariant bilinear form on \mathfrak{m} . Then (\mathfrak{m},b) is of reductive type, the center \mathfrak{m}_0 of \mathfrak{m} is b-orthogonal to the derived system $\mathfrak{m}^{(1)}$, and the distinct simple ideals of $\mathfrak{m}^{(1)}$ are mutually b-orthogonal.

Proof. As m is reductive, $\mathfrak{m} = \mathfrak{m}_0 \oplus \mathfrak{m}^{(1)}$, and (10.13a) says $b(\mathfrak{m}_0, \mathfrak{m}^{(1)}) = 0$. Now apply Proposition 10.14 to the semisimple system $\mathfrak{m}^{(1)}$.

- **10.19. Corollary.** Let \(\(\ell\) be a Lie algebra over a field of characteristic zero. Then \(\ell\) is reductive if, and only if,
 - (i) every abelian ideal of \(\ext{\(i\)}\) is central, and
- (ii) I has a nondegenerate invariant bilinear form which is nondegenerate on the center of I.

If Γ is reductive and b is a nondegenerate invariant bilinear form, then the center z of Γ is b-orthogonal to the derived algebra Γ , and the distinct simple ideals of Γ are mutually b-orthogonal.

Conditions (i) and (ii) both fail for the algebra (3.7).

Condition (i) does not imply (ii), as seen from the Lie algebra ℓ of $Sp(n,R) \cdot H_n$ where H_n is the (2n+1)-dimensional Heisenberg group, Sp(n,R) acts irreducibly on a (2n-dimensional) complement to the center Z of H_n , and Sp(n,R) acts trivially on Z. Here \mathfrak{z} is the only abelian ideal in ℓ .

References

- [1] L. Auslander, On radicals of discrete subgroups of Lie groups, Amer. J. Math. 85 (1963) 145-150.
- [2] A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963) 111-122.
- [3] É. Cartan & J. A. Schouten, On the geometry of the group manifold of simple and semisimple groups, Nederl. Akad. Wetensch. Proc. Ser. A, 29 (1926) 803-815.
- [4] —, On Riemannian geometries admitting an absolute parallelism, Nederl. Akad. Wetensch. Proc. Ser. A, 29 (1926) 933-946.
- [5] J. E. D'Atri & H. K. Nickerson, *The existence of special orthonormal frames*, J. Differential Geometry **2** (1968) 393-409.
- [6] N. J. Hicks, A theorem on affine connexions, Illinois J. Math. 3 (1959) 242-254.
- [7] N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc. 70 (1951) 509-530.
- [8] —, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ. Vol. 39, 1968.
- [9] W. G. Lister, A structure theory of Lie triple systems, Trans. Amer. Math. Soc. 72 (1952) 217-242.
- [10] A. I. Mal'cev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR, Ser. Mat. 13 (1949) 9-32.
- [11] J. A. Wolf, Spaces of constant curvature, Second edition, Berkeley, 1972.
- [12] J. A. Wolf & A. Gray, Homogeneous spaces defined by Lie group automorphisms. II, J. Differential Geometry 2 (1968) 115-159.

UNIVERSITY OF CALIFORNIA, BERKELEY