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ON THE GEOMETRY AND CLASSIFICATION
OF ABSOLUTE PARALLELISMS. 1I

JOSEPH A. WOLF

8. The irreducible case

Let (M, ds?) be a simply connected globally symmetric pseudo-riemannian
manifold, and ¢ an absolute parallelism on M consistent with ds*. We assume
(M, ds*) to be irreducible. Our standing notation is

p: the LTS of ¢-parallel vector fields on M,
g: the Lie algebra of all Killing vector fields on M,
o,: conjugation of g by the symmetry s, at xe M,
=1f 4+ m: eigenspace decomposition under o,.
The irreducibility says that m is a simple noncommutative LTS, and thus
(Lemma 6.2) says the same for 9.

8.1. Lemma. FEither [p,p]l = por[p,pl N p = 0.

Proof. Let t = [p,p] N p. Then [[p, p], p] C p implies [i,p] C i and so
[ipp] < i. Thus i is a LTS ideal in p. By simplicity, either t = 0 or t = p.

If t = 0, then [p,pl N p = 0. If t = p, then p C [p, p]. As [i, p] C i, also
[p, p] € p. Hence [p,p]l = p. q.e.d.

We do the group manifolds immediately.

8.2. Proposition. Let (M, ds®) be irreducible simply connected and glob-
ally symmetric, with consistent absolute parallelism ¢ such that the LTS of ¢-
parallel fields satisfies [p, 9] N p == 0. Then [p,p]l = p,p is a simple real Lie
algebra, and (M, ¢, ds*) = (P, 2, dg*) where

(1) P is the simply conncted group for b,

(ii) 2 is the parallelism of left translation on P, and

(ili) deé* is the bi-invariant metric induced by a nonzero multiple of the
Killing form of p.

The symmetry of (P,dd*) at 1 € P is given by s(x) = x~'. The group G of all
isometries of (P, dg* has isotropy subgroup K at 1 given by

K = Autg (p) U s-Autg (p) .

The identity component G, of G is locally isomorphic to P X P, acting by left
and right translations. G is the disjoint union of cosets «-G, and sa-G, as «
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runs through a system of representatives of Auty (p)/Int (p). Finally, sQ2) is the
parallelism of right translation, and is the only other absolute parallelism on P
consistent with do*.

Proof. Theorem 3.8, Lemma 8.1, fact (10.6), and the fact that any in-
variant bilinear form on a real simple Lie algebra is a multiple of the Killing
form, give us (M, ¢, ds*) = (P, 2, dg*) with s(1) = p, as claimed. The assertions
on G and K follow from (5.2) and the fact that every derivation of a simple
Lie algebra is inner. q.e.d.

Now we start in on the non-group case.

8.3. Lemma. Let [p,p] N p = 0. Then g is simple, g = [p,v] + p, and
there is an automorphism

(8.4) €zt 0 —q suchthat e,(§) =& — 0,(§8) for&ep.

Proof. T = [m, m] is faithfully represented as the Lie algebra of all LTS
derivations of m. Now (10.3) shows g = [ (i) standard Lie enveloping algebra;
as 1 is simple this forces g = {,;(m) universal Lie enveloping algebra. If g were
not simple, then (10.7) m would be the LTS of a Lie algebra, and Theorem 3.8
would force [p, p] € p. Thus g is simple.

Let 4: m — p be the inverse of the LTS isomorphism f, of Lemma 6.2. Then
h extends to a Lie algebra homomorphism of {,(m) = g onto the algebra
[p, pl + p generated by p. As g is simple, #: g = [p,p] + p. In particular
[p, 9] + p = g and we realize ¢, as h~*. q.e.d.

Our method consists of showing that ¢, and ¢, generate such a large group
of outer automorphisms of g that we can deduce g to be of type D, and ¢, to
be the triality. Some technical problem (proving ¢, outer) forces us to reduce
to the compact case.

We construct a compact riemannian version of (M, ds*). Choose

(8.523) #: Cartan involution of g .

Thus 6 is an involutive automorphism of g, whose fixed point set is a maximal -
compactly embdded subalgebra I C g. Let q be the —1 eigenspace of 6 on g.
Then we have

(8.5b) g =1+ q Cartan decomposition under ¢ .

Now choose x ¢ M so that ¢, commutes with 4. That is always possible because
the o,, z€ M, form a conjugacy class of semi-simple automorphisms of g. That
done, we have

(8.5¢) f=¢ND+EN, m=mnND+mNag .

Now define
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(8.6a) g* ={ 4+ ig compact real form of g° ,

and define subspaces of g* by
(8.6b) = ¥ N g*, m* = m’ N g*.

o, extends to g¢ by linearity and then restricts to an aﬁtomorphism (still de-
noted g,) of g*. Now

(8.6¢) g* = f* + m* eigenspace decomposition under g, .

To pass to the group level we define

G*: simply connected group with Lie algebra g*,

K*: analytic subgroup for *.
Then G* is a compact semisimple group, and K* is a closed subgroup because
it is identity component of the fixed point set of ¢, on G*. Now we have

M* = G*/K*: compact simply connected manifold.

The Killing form « of g* is negative definite, so the restriction of —x to m*
induces

df*: G*-invariant riemannian metric on M*.

We summarize the main properties as follows.

8.7. Lemma. (M*, dt®) is a simply connected globally symmetric
riemannian manifold of compact type, and g* is the Lie algebra of all Killing
vector fields on (M*, dt?). For simple g, (M*, df®) is irreducible if and only if
a® is simple. 1f g is simple but g° is not simple, then g = [° with | compact
simple and ¢, C-linear on g, and g* = 1@ lwitht* =t N D@ E N D).

Proof. The riemannian metric d¢* is symmetric because it is induced by an
invariant bilinear form —« of g*. As g* is semisimple and ¢, -stable it must
contain every Killing vector field of (M*, df?).

If g€ is simple, then g* is simple, so (M, dt?) is irreducible. If (M, dr?) ir-
reducible, then m* is a simple LTS; if further g is simple, then m (thus also
m*) is not the LTS of a Lie algebra; thus g* is simple, and that proves g°
simple.

Suppose g to be simple but g° not simple. Then g = [¢ where the maximal
compactly embedded subalgebra | is a compact real form. To avoid confusion
we write ¢ = [ + jl with * = —1. Were ¢, antilinear on g its fixed point set
f would be a real form, so g = { + jt and m = jf; then f would be absolutely
irreducible on mt, so (M, dt*) would be irreducible, contradicting nonsimplicity
of g°. Thus ¢, is complex-linear on g. Now the fixed point set ¥ = (¥ N 1),
and the assertions on g* and * follow. q.e.d.

If (M, ds® is compact, then (M*,dr*) = (M, cds®) for some real ¢ == 0. If
(M, ds*) is riemannian, then (Corollary 4.5) it is compact.
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We carry ¢ over to an absolute parallelism on (M*, df?).

8.8. Lemma. The Cartan involution § can be chosen so that 6(p) = p.
Assume 6 so chosen, and define p* = p® N g*. Then there is an absolute par-
allelism ¢* on M* consistent with dt*, such that p* is the LTS of ¢*-parallel
vector fields on M*. If [p, p] = p, then [p*, p*1 = p*. If [p,p]1 N p = 0O, then
[p*, p*1 N p* = 0.

Proof. 1If [p,p]l = p, then g = b @ b with each summand stable under any
choice of 4, and p = b @ 0. Then g* = v* @ v* with p* = p* D 0 and all the
assertions are trivial.

Now suppose [p, p1 N p = 0. Then from (8.4) we have an involutive auto-
morphism = = ¢;%0,¢, whose fixed point set is [p, p] and whose — 1 eigenspace
is p. Note that this shows = to be independent of x. As x is a semisimple
automorphism of g, we can choose 4 to commute with x.

We now assume further that § commutes with z. In other words, using (8.5),

8.92) [p,pl={Up,pI N D+ Ap,pl N, pP=GBNDH+GBN.
From this we see
(8.9b) [p*, p*1 = [p, pI° N g*, so g* = [p*, p*]1 + p* .
In order to proceed we must check that
(8.10) A —o)lp,pl=m, (I —adip*p*]=m*.

In view of (8.9) it suffices to check the first of these assertions. If
(1 — &,)[p, p] = m, then we have O == u ¢ m such that

(1 — o )l,nl,w) =0 forall & peyp .
Let L ep with (1 — ¢,){ = u. Now
dsi(&, [y, €D = dsi((§,91,0 =0 for all &, pep

implying [p, £] = 0. Applying ¢, now [nt, ] = 0. As nt is a simple noncom-
mutative LTS now u = 0. We conclude (1 — ¢, )[p, pl = m, and (8.10) is
verified.

Let J* denote the analytic subgroup of G* for [p*, p*]. It is closed in G*,
thus compact, because it is the identity component of the fixed point set of the
automorphism = = ¢;%0.¢, on G*. Denote

(8.11a) x*=1.K¥eM* .
Now (8.10) shows J*(x*) is open in M*. As J* is compact, so is J*(x*). Thus

(8.11b) JA*) = M* .
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Recall that d#? is induced by negative of the Killing form « of g*. Note that
(1 — ;) is x-orthogonal projection of g* to m*, and also from (8.9) that ¢,
is well defined on g*. Now let &, ye p*. If j e J*, then ad (j)7*&, ad (j) "'y € p*,
and we compute

4dt; (&, ) = 4dri.(ad (D7'E, ad (D7)
—&((1 — o,) ad ()7, (1 — a,) ad (D7)
= —#le;ad (D76, e, ad (D7) = —(§, 1) ,

ll

which is independent of the choice of je J*. But (8.11) says that every element
of M* is of the form j(x*). Thus

(8.12) if & nep*, then d*(§, ») is constant on M* .
Choose a basis {&, ---,&,} of p*. The &, form a basis of M¥ because
(1 — a.)p* = m*. Now (8.12) says that {§, - - -, &,} is a global frame on M*

with the dri(§;,&;) constant. Recall that the &; are Killing vector fields of
(M*,dr®). Corollary 4.15 now says that M* has an absolute parallelism ¢*
consistent with d#* such that p* is the space of ¢*-parallel vector fields. g.e.d.

If [ is a Lie algebra over a field F, then Aut, () denotes the group of all
automorphisms of [ over F. If F = R or F = C, then Int ([) denotes the normal
subgroup of Auty ([) consisting of inner automorphisms, i.e., generated by the
exp (ad v) with vel. If [ is real or complex semisimple, then Int () is the
identity component of the Lie group Aut; (0).

Now we begin to identify (M, ds®).

8.13. Lemma. Suppose [p,p] N p = 0. If a e Autg (q) is induced by an
isometry of (M, ds%), in particular, if «elInt (g), then a(m) = p, and e a does
not commute with o,,. If a* € Auty (g*) is induced by an isometry of (M*, df?),
in particular, if o* ¢ Int (g*), then a*(m™*) = 9*, and e,a* does not commute
with a.

Proof. Let ae¢ Autg(g) induced by an isometry a of (M,ds?). Then
Y = a”*($) is an absolute parallelism on M consistent with ds*, and the LTS of
r-parallel vector fields is &~ '(p). If w(m) = p, then m is the LTS of «~parallel
fields, and the comparison of (4.7) with (5.2) proves (M, ds®) to be flat. As
(M, ds*) is not flat, we conclude a(m) = p. In particular, e,a(m) # m, i.e., e,
does not preserve the —1 eigenspace of ¢, s0 e, does not commute with o,.

Lemma 8.8 allows us to use the same argument for «*, m* and p*. q.e.d.

If g% is not simple, Lemma 8.7 tells us g = [ where [ is compact
simple and ¢, ¢ Aut; (I°). However, it is conceivable that our extension
ez € Autg (g) of f,: p = m be complex antilinear. Should that be the case,
note that the Cartan involution 4 is complex antilinear on [°, so ¢,8 € Aut, ({€).
Thus either
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(8.14a) ez € Auty (19 and we denote ¢, = ¢, € Aut, (I9)
or
(8.14b) e. ¢ Auty ([°)  and we denote ¢, = ¢,0 ¢ Aut, (I9) .

8.15. Lemma. Ler [p, p]Np = 0. If ¢° is simple, then Int (g°), g, -Int(g%)
and ¢, -Int (o) are three distinct componenis of Aut, (g°). If g° is not simple,
so g = [Y with [ compact simple, then Int (g), o, -Int (g) and &, -Int (g) are
three distinct components of Aut, ([°).

Proof. First consider the case where ¢¢ is simple. Then g* is simple and
(M*, di) is irreducible. Every nonzero element of p* is a never-vanishing vector
field on M*, so the Euler-Poincaré characteristic y(M*) = 0. That implies
rank G* > rank K*, 5o ¢, is an outer automorphism on g*. Now ¢, ¢ Int (g©).

If ¢, is an inner automorphism of g°, then it is inner on g* giving «* =
e;t e Int (g*) such that e.o0* commutes with ¢,. Thus Lemma 8.13 forces
ex ¢ Int (g9).

It ¢, and ¢, differ by an inner automorphism of g°, then a* = ¢;'s, ¢ Int (g%)
such that e,* commutes with ¢,. Thus Lemma 8.13 forces
a.-Int (g°) N e,-Int (g°) to be empty. :

The assertions are proved for g¢ simple. Now suppose g° to be not simple.
Then ¢ = (€ with [ compact simple and ¢, ¢ Aut, (I°) by Lemma 8.7, and we
have &, ¢ Aut, (I°) as in (8.14). Now ¢* = [ @ [ with each summand stable
under ¢, so the argument for simple g° shows ¢, to be outer on each summand
of g*. It follows that ¢, is outer on [¢ = g, i.e., that ¢, ¢ Int (g).

If ¢ is inner on [¢ then o = &' ¢ Int(g) and /" commutes with ¢,. From
(8.5¢) we see that ¢ is induced by an isometry of (M, ds?). Thus ¢,a commutes
with ¢, where either « = o’ or « = 0a’, and where « is induced by an iso-
metry of (M, ds?). That contradicts Lemma 8.13, forcing ¢, ¢ Int (g). A similar
modification of the argument for simple g¢ proves g, -Int (g) N &, -Int(g) to be

empty.
The assertions are proved for g° non-simple. q.e.d.
Given integers p, ¢ > 0 and a basis {e, - - -, e, ,} of R?*? we have the sym-

metric nondegenerate bilinear form b, , on R?*? given by

P+q  p+q P ) q
by ol 2iate, > cle;) = X akct — ) aPtEertE
iz =1 k=1 k=1

Now denote
O(p,q): real orthogonal group of b, , ,

so the usual orthogonal group in m real variables is O(m) = O(@mn, 0). Now
O(p, g) has four components if pg + 0, and two components if pg = 0. Denote
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SO(p, q): identity component of O(p, q) ,
so(p,q): Lie algebra of O(p,q) .
Then of course

SO(m) = SO(m,0) , go(m) = 3o(m,0) .
Consider the (p + g — 1)-manifold

SO(p, 9)(e) = SO, 9)/SO(p — 1, q) , p>1;

b, , induces a pseudo-riemannian metric of signature (p — 1, g) and constant
curvature 1 under which it is globally symmetric, and the case ¢ = O is the
sphere $?77!' = SO(p)/SO(p — 1). We also have

SO(p, 9)e,,,) = SO, 9)/SOp,q — 1), g>1;

there b, , induces a globally symmetric preudo-riemannian metric of signature
(p, 9 — 1) and constant curvature —1, and the case ¢ = 1 is the real hyper-
bolic space H? = SO(p, 1)/SO(p). Finally denote

O(m, C) = O(m)°  complex orthogonal group of b

p,m—-p >

SO(m, C) = SO(m)¢ . identity component; and
go(m,C) = 3o(m)° Lie algebra of SO(m, C) .
Viewing R?*? C C?*9 we have (m = p + q)
SO(m, C)e;) = SO(m, C)/SO(m — 1,C) ,

globally symmetric pseudo-riemannian manifold of signature (m — 1,m — 1)
and nonconstant curvature, affine complexification of S™~!.

Finally we have our classification. Recall that we are using the notation

G group of all isometries of (M, ds?);

g: Lie algebra of G, Killing fields of (M, ds*);

xeMand K = {geG: glx) = x} so M = G/K;

g =14 m: decomposition under symmetry o, ;

p:  the LTS of ¢-parallel vector fields on M.

8.16. Theorem. Let (M, ds®) be an irreducible simply connected globally
symmetric pseudo-riemannian manifold with consistent absolute parallelism ¢.
If [p,p]l N p == O, then (M, ¢, ds®) is a group manifold as in Proposition 8.2.
If Ip,91 N p =0, then there are just three cases, all of which occur, as
follows.

Case 1. M = SO(8)/SO(7), the sphere §7, and ds* is a positive or negative
multiple of the SO(8)-invariant riemannian metric of constant curvature 1.
Here G = O(8) and K = O(7), 2-component groups.
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Case 2. M = S0O(4,4)/SO(3,4), diffeomorphic to $* X R*, and ds* is a
positive or negative multiple of the SO(4, 4)-invariant pseudo-riemannian metric
of signature (3, 4) and constant curvature 1. Here G =0(4, 4) and K = 0O(3, 4),
4-component groups.

Case 3. M = SO(8,C)/50(7, C), affine complexification of S" and diffeo-
morphic to 87 X R, and ds® is a multiple of the nonconstant curvature metric
of signature (7,7) induced by the Killing form of SO(8, C). Here

G=0@B,0 Uv0@E0, K=001,0U».000,

where v is complex conjugation of C® over R® (so that conjugation by v is a
Cartan involution 6 of G,).

All possibilities for ¢ are as follows. There is a triality automorphism ¢ of
order 3 on g with fixed point set §* of type G, such that both ¢ and o, commute
with a Cartan involution 8. Denote

P = e (m) so that [Py, ) = ¢7(F),

and observe that

e} (f) is the image of the spin representation of t .

Denote
J={ieG:ad(p, = b}, and p, =ad @y, forr=2glecG/J.

Then J, is the analytic subgroup of G for ¢~'(t), and

(1) J={=x1I}-J, 2-component group in cases 1 and 2, J = {1, xv}-J,
4-component group in case 3;

(i) the p,, re G/J, are mutually inequivalent under the action of G;

(iii) if r € G/J then there is an absolute parallelism ¢, on M consistent with
ds* whose LTS is p,;

(iv) every absolute parallelism on M consistent with ds® is in the 7-para-
meter* family {¢,},c o/

(v) the parameter space G|J of {¢,} is diffeomorphic (via ) to the disjoint
union of two copies of M [{+1;}; and

(vi) J, is transitive on M.

Proof. If [p,p] N p = 0, we apply Proposition 8.2. Now suppose
[p,p]1 N p=0.

First, consider the case where g is a compact simple Lie algebra. Then g is
simple and Lemma 8.15 says that Aut, (g°)/Int (g°) has order >3, so
Auty (g)/Int (g) has order >3. This implies that g is of Cartan classification
type D,, i.e., g = 30(8). Again by Lemma 8.15, ¢, is triality, and ¢, is outer

4 The parameters are real in cases 1 and 2, and complex in case 3.
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on g, so the possibilities for f are 30(7) and 80(3) @ 30(5). In the latter case f
and ¢,(f) would be Int(g)-conjugate, so we would have «elInt(g) with
ezo(f) = ¥; then ¢, commutes with ¢, in violation of Lemma 8.13. Thus { =
30(7) and M = SO(8)/SO(7) = §7, as in case 1. Invariance forces ds* to be a
multiple of the standard riemannian metric do* of constant curvature 1. Then
(M, d¢*) and (M, ds*) have the same isometry group, so G = O(8), whence
K = 00).

Second, consider the case where g is noncompact but g¢ is simple. Then g*
is simple. Lemma 8.8 and the argument for compact simple g show that g* =
80(8), I* = 30(7) and M* = §", and that ¢, is triality on g*. The noncompact
real forms of 80(8, C) are the 30(p,8 — p), 1 < p < 4; the real form 30%(8)
whose maximal compactly embedded subalgebra is the Lie algebra u(4) of the
unitary group in four complex variables, is triality-equivalent to 80(2,6). How-
ever g is stable under the triality automorphism ¢, of ¢ = 80(8, C). Let ¥ =
G,/L, irreducible symmetric space of noncompact type where L is a maximal
compact subgroup of G,; now e, induces an isometry e of Y. Let ¢ = ab where
aeG, and b(1.L) = 1.L; then conjugation by b induces an automorphism g
of [ which extends to a triality automorphism of g, so * is an outer automor-
phism of [. If 8 is an automorphism of 80(7), of 50(2) ® 80(6), or of
80(3) @ 80(5), then g is inner. We conclude that g = 30(4,4), which in fact
does admit triality from the split Cayley algebra. Thus f = 50(3,4), M =
$0(4,4)/S0(3,4), and ds?, G and K are specified as in case 2.

Third, consider the case where g¢ is not simple. Lemma 8.7 says g = [¢
with [ compact simple, f = FNDC, g* =@ land F=(END D (ENT). The
argument for compact simple g says [ = 80(8), f N [ = 30(7) and M* = §" X §".
Thus g = 80(8, C), f = 80(7,C) and M = SO(8, C)/SO(7, C). Now ds?, G and
K are specified as in case 3.

It remains to verify the assertions on the construction of all consistent abso-
lute parallelisms for the spaces (M, ds®) of cases 1, 2 and 3.

Let M = G/Kandg =f + m asincase 1, 2 or 3 of the theorem. Then g
admits a triality automorphism ¢ of order 3 with fixed point set g* of type G,
[12, Table 7.14]. Fix a Cartan involution & of g which commutes with ¢,. As
¢ = 1, ¢ is a semisimple automorphism of g, so we may replace ¢ by an Int (g)-
conjugate if necessary to arrange ¢# = fe. That done we use § to construct a
compact real form g* = £* + m* of ¢ as in (8.5) and (8.6), and ¢ extends
by linearity to g¢ preserving g*. Define p, = ¢~'(m) as prescribed; then pF =

¢ N g*is e (m*).
Let « denote the Killing form on g. We need to prove the following facts:

(8.17a) (1 —o)p, = m, (1 — 6Py P =m, and
8.17b) if &pep,, then x(&7) = (1 — )5, (1 —a.))) .

To do this we note that g* = f N ¢7'(f), so the orthocomplement of g* in g
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relative to £ is ¥+ + ¢7'(f+) = m + ¢~ '(m) = m + p,. Now ™! is a rotation by
2x/3 on m* + p¥. As (1 — ¢,) is the orthogonal projection of m* + p¥ to
m*, that says #(£,7) = «((1 — 0.)§, (1 — g.)y) for &, 7 € pf. The same follows
by linearity for &, 5 e p§, and thus for &,z e p,. That proves (8.17b), and the
first assertion of (8.17a) follows. Let dim denote dimy in cases 1 and 2, and
dim, in case 3. Then dimg = 28, dimf = 21, dimg* = 14 and dim m = 7.
Thus dim (1 — g ){p,, P = dime ' (f) — dimg* = 21 — 14 = 7 = dim m,
proving the second part of (8.17a). Now (8.17) is verified.

As prescribed, let J be the normalizer of p, in G. As f is the normalizer of
m in g, so [p,, p,] = ¢ '(f) is the Lie algebra of J, and assertion (i) on the
structure of J follows,

LetjeJ and &,5¢ p,, and let 8 be the multiple of £ that induces ds’. We
compute

4ds’ (&, ) = 4dsi(ad (N7'¢, ad (H)7'p)
= 48(3(1 — ¢,) ad (D76, 31 — ¢z) ad (N7'p)
=1 —o)ad (D76, (1 — g;) ad (D7)
= plad (N7, ad (N~'p = B¢, n) ,

which is independent of je J. Thus ds%(&,7) is constant on J(x). However
(8.17a) says that the Lie algebra [p,, p,] of J orthogonally projects onto 1.
Thus J(x) is open in M. Now choose a basis {&, - -+, &,} of p,. We have just
checked that the ds*(¢;, &;) are constant on the open set J(x) C M. Now
(1 — ¢,)p, = m shows that {£,.--,§,} is a global frame on J(x). Thus
Corollary 4.15 says that there is an absolute parallelism ++ on the connected
manifold Jy(x), consistent with ds* there, for which the &; are parallel. Lemma
6.4 says that (M, ds®) has an absolute parallelism g, such that the £|;,.,,. £ € p,,
are ¢,-parallel on Ji(x). By analyticity, or because ¢,-parallel fields are Killing
vector fields, now p, is the LTS of all ¢,-parallel vector fields on M.

If r = gJ € G/J, we define p, = ad (g)p, as specified. Then ¢, = g(g,) is an
absolute parallelism on M consistent with ds?, and its LTS is ad (g)p, = p,.
This gives us our 7-parameter family {¢,} of absolute parallelisms consistent
with ds®.

We check that the original absolute parallelism ¢ on M is contained in the
tamily {¢,}. Let Aut (g) denote Aut, (g) in cases 1 and 2, and Aut, (g) in case
3. Then Aut (g)/Int (g) is the group of order 6 given by & = s* = 1, ses™! =
e~'. Here s represents the component of ¢,, and ¢ the component of ¢. Thus
e (or &, in case 3) is in a component represented by e, es, ses™! or se. Now
there are isometries g, b € G of (M, ds?) such that ¢, = ad (b)-<-ad (g)' and
either b =1 or b = s, symmetry. Let r = g/ e G/J. Then p = ¢;}(m) =
ad (g)-¢7'-ad (b~)m) = ad (@e~'(m) = ad (g)p, = p,. Thus ¢ = ¢..

Assertion (ii) on the structure of J and {¢,} is immediate from the definition
of J. We have just proved assertions (iii) and (iv). Now (i), (v) and (vi) remain.
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Let N = G,/J,, and let 8 be the multiple of the Killing form of g which
induces ds* on M. Then g induces a metric du’ on N, and ¢ induces an isometry
of (N, du?) onto (M, ds*). If g ¢ G, we notice that ad (g)* is an inner automorphism
of g. If 4 is an isometry of (N, di?), it follows that ad(4)? is an inner automor-
phism of g. Thus p, = ad (g)e~'(p,) whenever g ¢ G, for (ad (g)¢~!)? is outer on
g. If J meets 5,G,, say gs, ¢ J where g ¢ G, then

P, = ad (g)o(p) = ad (®a,e (M) = ad (g)eg,(m)
= ad (g)e(m) = ad (9)(p,) = ad (e~ '(py) »

which was just seen impossible. Thus
(8.18a) - J does not meet the component s,G, of G .

The Int (g)-normalizer of m is the connected group ad (K, U (—I)K,), so
the normalizer of p, = ¢7'(in) in Int (g) is ad (J, U (—1)J,). Thus

{xIL}-J, (2 components) in cases 1 and 3,
(8.18b) JN G, = ]
J, (connected) in case 2.

Note v e J in case 3. Denote
J' = {x1}-J, in cases 1 and 2, and J = {=xI, £v}-J, in case 3.

J’ meets one of the two components of G in case 1, and meets two of the four
components of G in cases 2 and 3. Thus G/J'G, has order 2. But (8.18a)
says that G/JG, has order >2. As J' C J, now JG, = J'G,. However, (8.18b)
says J N G, = J N G,. We conclude J = J’, thus proving assertion (i) on the
structure of J.

In view of (i), G/J is the disjoint union of two copies of G,/(J N G, =
G,/{*x1}-J,. Since the isometry (N, du’) — (M, ds*) induced by ¢, where N =
G,//J,, induces a diffeomorphism of G,/{+I;}-J, onto M /{+I;}. Assertion (v)
follows.

Recall that the Lie algebra ¢ '(f) of J is the image of the spin representation
of ¥. Thus

(8.19a) Jo = Spin (7), Spin (3, 4), Spin (7, C) in cases 1,2, 3.

Recall also that £ N ¢7'(f) = g° algebra of type G,. Let G, denote the compact
connected group of that type, G the complex connected group of that type,
and G the analytic subgroup of G¢ which is the noncompact real form. Now

(8.19b) U NK),=G,GiGS incases 1,2,3 .

Now count dimensions, or recall from (8.17a), to see that
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Jo(x) is open in M.

In case 1, where J, is compact, this give us Jo(x) = M.

In cases 2 and 3, we choose a basis {e,, - - -, ¢;} of the ambient space R® or
C® of M such that the e; are mutually orthogonal, each |e, ! = |b(e;, ex)! = 1,
and

case 2: U = ¢R + ¢,R + ¢,R + ¢,R is positive definite, and
V =eR + eR + ¢,R + ¢;R is negative definite;

case 3: U =¢eR + ... + ¢R is positive definite, and so
V =iU =ieR + -+ + ie;R is negative definite.

Then
eeeM={u+v:uelU,veV and |u|f--|vI}f=1}.
Given real r > s > 0 with r» — s> = 1 we define
S,o={u+v:iueUweV,|uf=r and |v|}=s}.

Now M is the disjoint union of the S, ..
As J, is noncompact semisimple, its Lie algebra has an element w == 0 which
is diagonable with all eigenvalues real. The eigenvalues come in pairs {4, —h}

by (8.19a). Renormalizing w, now we may assume {e;, - - -, &;} chosen so that
case2: wle, + e) =e¢ + e, and wle, —e) = —(¢, — &) ;
case 3: w(e, + ie,) = e, + ie, and w(e, — ie,) = —(e, — ie,) .

Now by direct calculation
exp (IW) - €; € Seen 1y, sinh 1) t>0.

Thus Ji(e,) meets each of the sets S, ;.
Let H={gelJ,: g(U) = U}. Then also g(V) = V for ge H, and H is the
maximal compact subgroup

Spin (3) -Spin (4) in case 2, Spin (7) in case 3.

In case 2 the Spin (3)-factor on H is transitive on the sphere |[u|* = #* in U,
and the Spin (4)-factor is transitive on the sphere |[v|? = s* in V. Thus H is
transitive on each S, ;. As J(e,) meets each S, ;, now Ji(e) = M.

In case 3, H is transitive on the sphere ||u||? = #* in U, and the subgroup
H, preserving e, is G, by (8.19b). Thus H, is transitive on the spheres ||v,|* =
stini(e,R + e,R + --- + eR). If z ¢ S, ;, then some element of H carries z to
7 = re, + i(ae, -+ be,) where b > 0 and a* + b* = s°.. However, z’ ¢ M says
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(r + ia? + ((b)}*=1sora = 0; as r > 0 now a = 0; thus 2’ = re, + ise,.
Choose t > 0 such that r = cosh (¢), so s = sinh (£); now

7' = cosh (e, + isinh (fle, = exp (tw) e, .

Thus Ji(e,) = M, and (vi) is proved, completing the proof of Theorem 8.16.

9. Global classification of reductive parallelisms

Theorems 7.6 and 8.16 completely describe the possibilities for the
(M;, ¢;, ds?) in Theorem 6.7. Splitting the flat factor as in the proof of Propo-
sition 7.5, we thus reformulate Theorem 6.7 as follows.

9.1. Theorem. Let (M, ¢,ds®) be a connected manifold with absolute par-
allelism and consistent pseudo-riemannian metric such that ¢ is of reductive
type relative to ds®. Then there exist

(1) unique integerst > u > 0,

(2) simply connected globally symmetric pseudo-riemannian manifolds
M;, ds)), —1 < i< t, unique up to global isometry aud permutations of
1,2, -« ,uyand {u + Lu + 2, -.-, 14}, and

(3) absolute parallelisms ¢, on M; consistent with ds: and unique up to
global isometry, such that the (M, ¢;, ds?) and

(M: 555 doz) = (M—I’ ¢—17 dsz—l) X e X (Mt: ¢ndsf)

have the following properties:

(i) For —1<i < u,M; is the simply connected group for a real Lie
algebra p,, ¢, is its absolute parallelism of left translation, and ds: is the bi-
invariant metric induced by a nondegenerate invariant bilinear form b, on §;.
Here (p_,, b_,) is obtained as in (1.2) and (7.4a), and p_, has center 3_, = 3+,
relative to b_,; so (M_,,ds%,) is flat. §, is commutative, so (M,, ds?) is flat and
@, is its euclidean parallelism. If 1 < i < u, then p, is simple and b; is a non-
zero real multiple of its real Killing form, so (M, ds?) is irreducible.

(ii) Foru+ 1 <i<t,M,;is one of the symmetric coset spaces G,]K,
given by

SO(8)/SO(7) ordinary 7-sphere,
§SO(4,4)/50(3,4) indefinite 7-sphere, or
SO(8,C)/SO(7,C) complexified T-sphere;

ds? is induced by a nonzero real multiple of the real Killing form of G,, and
¢; comes from a triality automorphism of g as in Theorem 8.16,

(i) Every xe M has a neighborhood U and an isometry h: (U, ds*) —
(U, do?), U open in M, such that h sends Bl to Blg.

(iv) If ¢ is complete, i.e., if (M, ds®) is complete, then there is a pseudo-
riemannian covering =: (M, do®) — (M, ds?) which sends é to ¢.
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We draw two corollaries of Theorems 3.8, 7.6 and 8.16 which complement
the statement of Theorem 9.1.

9.2. Corollary. Let (M, é,ds®) be a complete simply connected pseudo-
riemannian manifold with consistent absolute parallelism of reductive type.

(i) Then the group of all isometries g of (M,do*) such that g($) = & is
transitive on M.

() If (M, de®) has no euclidean (flat) factor, and ¥ is another absolute
parallelism consistent with dg®, then (M,ds?) has an isometry g such that
&)= _

Proof. (M, ¢,ds") is the product of the (M;, ¢;, ds?), —1 < i< t, as in
Theorem 9.1. If —1 < i < u there, then the left translations of the group
manifold M; are transitive and preserve ¢,. If u + 1 < i < ¢, then the required
transitivity is the transitivity of the group J in Theorem 8.16. Thus (i) holds
for each (M,, ¢;,ds?), and thus for (M, @, de?. Similarly, (ii) follows from
Proposition 8.2 and Theorem §.16.

9.3. Corollary. Let ds* be of signature (n — q,q) or (g, n — q),0 < g < 2,
in Theorem 9.1.

(i) M_, is reduced to a point, i.e., the parallelism on the flat factor of
(M, do®) is euclidean.

(ii) At most q of the simple group manifolds M,(1 < i < u) are non-
compact. Each noncompact one is the universal covering group of SL(2, R).

(iii)y Each of the quadrics M; (u 4- 1 < i < t) is an ordinary T-sphere.

(iv) If ¥ is any absolute parallelism on M consistent with do*, then (M, do®)
has an isometry g such that g(y) = §.

Proof. 1f M_, is not reduced to a point, then p_, is nonabelian by the nor-
malization 3_, = 3L, (rel. b_,) of Theorem 9.1 (i). Then the 3-form ¢ in the
construction (7.2) of p_, must be nonzero. But 7 is a 3-form on an r-dimensional
vector space where ds?, has signature (r, r). The latter implies r < 2s0z = 0.
Assertion (i) follows.

Let the simple group manifold M, (1 < i < u) be noncompact, and p; = {;
+ g, the decomposition of its Lie algebra under a Cartan involution. If [, =
dim {; and g, = dim g;, then ds? has signature (I;, g;) or (g;,!;). Thus either
I, <2orgq; <2 Ifl, <2, then [, has no simple ideal, so I, is 1-dimensional
by simplicity of p;; then R-irreducibility of {; on q; implies g, < 2. If g¢; < 2,
the symmetric space of noncompact type associated to p; must have constant
curvature and therefore must be the real hyperbolic plane, so p; is the Lie
algebra of SL(2, R). Each such M, contributes (1, 2) or (2, 1) to the signature
of ds*, so at most g occur. Assertion (ii) is proved.

The quadrice M, (u + 1 < i < ¢) have ds? of signature

50(8)/SO(7): (7,00 or (0,7 ;
SO4,4)/803/4): (3,4 or (4,3);
SO(8,C)/S0(1,C): 7,7 .
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The last two quadrics are excluded because g < 3. That leaves the 7-sphere,
proving assertion (iii).

Let ¥ be another absolute parallelism on A consistent with dg®. Then ¥ is
of reductive type by Lemma 6.2, and assertion (i) for (M, ¥, do®) shows v is
euclidean on the flat factor of (M, d¢®). Thus Lemma 6.2 shows (M, do®)
to be the product of the (M, v;, ds?) for certain y; with v, = ¢,. Now asser-
tion (iv) follows from Corollary 9.2. q.e.d.

Our goal now is a complete description of the possibilities for the coverings
of Theorem 9.1 (4).

9.4, Lemma. Let n: (M’,de*) — (M, ds*) be a pseudo-riemannian cover-
ing, and ¢ an absolute parallelism on M consistent with ds*. Let p be the LTS
of ¢-parallel vector fields on M, and y’ the space of all fields & on M’ with
n.& defined and in 9.

(i) There is a unique absolute parallelism ¢’ on M’ such that =n(¢') = . It
is consistent with d¢*, and ' is its L'TS of parallel vector fields.

1) If & ey and 7 is a deck transformation of the covering, then y, & = &'.

Proof.  Assertion (i) is immediate with ¢’ defined by the condition that p’
be its LTS. Then z,: 9’ = p, so as 7oy = z implies z,7,& = 7,§ we get
T*f/ — 5/'

9.5. Proposition. Let (M, ¢, de®) be a connected pseudo-riemannian mani-
fold with consistent absolute parallelism, and Z be the Lie group of all
. isometries g of (M’, de") such that if & is ¢'-parallel then g, & = &.

(i) If1 + ge Z, then g has no fixed point on M'.

(it) A subgroup of Z is discrete if, and only if, it acts freely and properly
discontinuously on M’.

(ili) The normal pseudo-riemannian coverings n: (M’, de*) — (M, ds*) such
that n(¢’) is a well-defined absolute parallelism on M are just the coverings
M’ — D\M'’ where D is a discrete subgroup of Z.

Proof. Let g e Z have a fixed point x ¢ M’. The tangent space M/, consists
of all &, with & a ¢’-parallel vector field. As each g,& = & now g,: M} — M/,
identity map. Since g is an isometry and M’ is connected, this shows g = 1,
and hence (i) is proved.

Choose a basis {&], - - -, &,} of the space §’ of parallel fields. Let {#?} be the
dual 1-forms. If g e Z each g*¢* = 6, so g is an isometry of the riemannian
metric dp* = 3(6%)°. The topology on Z is the compact-open topology from its
action on M’. Thus a subgroup D C Z is discrete if and only if it acts properly
discontinuously on M’; it acts freely by (i). Hence (ii) is proved.

If z(¢") = ¢ absolute parallelism on M, then ¢ is consistent with ds* and we
are in the situation of Lemma 9.4. The covering being normal, M = D\M’
where D is a group of homeomorphisms acting freely and properly discontinu-
ously on M’. The elements of D are isometries of (M’, do®) because r is pseudo-
riemannian. Now D C Z by Lemma 9.4, and D is discrete there by (ii).
Conversely let D C Z discrete subgroup. Then D acts freely and properly
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discontinuously on M’ by (ii), so z: M’ - D\M’ = M is a normal covering.
Since D acts by isometries, & is pseudo-riemannian and z(¢’) is a well-defined
parallelism by definition of Z. Hence (iii) is proved. q.e.d.

We collect the specific information needed to apply Proposition 9.5 in the
complete reductive case.

9.6. Lemma. Ler (M, $,da*) be a simply connected manifold with complete
absolute parallelism of reductive type and consistent pseudo-riemannian metric.
Let Z(M, $, do®) denote the Lie group of all isometries of (M, do®) which
preserve every ¢-parallel vector field. Decompose (M, $,ds?) as the product
of the (M, ¢;, ds?), as in Theorem 9.1.

(i) Z(M,$,do® is the product of the Z(M;, ¢, ds?).

(ii) If M, is a group manifold (i.e., —1 < i < u), then Z(M;, ¢;, ds?) is its
group of left translations.

(ii) If M; is a quadric (i.e., u + 1 < i < 1), then Z(M;, ¢;, ds?) = {+1}.

Proof. letge Z(M, é,do®). Then g acts trivially on p =p_, B p, D p, D
<+« @y, so it preserves each ideal p,. Thus g =g , X g X --- X g where
g€ Z(M,, ¢;,ds?), and (i) is proved.

Let M; be a group manifold, and L; the group of its left translations. Then
L, CZ(M,, $;,ds?). If g e Z(M;, ¢, ds?), we have h e L, such that hg(l) = 1.
Since hg is an isometry and acts trivially on 9;,hig = 1, andthusg =h"'e L,,
proving (ii).

Let M, be a quadric. Then the group G, of all isometries of (M,, ds}) has
Lie algebra g; = [p;, p;] + ;. Let g e Z(M,, ¢;, ds?) and y = ad (g) € Autz(g;).
Then 7 is trivial on p,, and hence also trivial on [p;, p;], so y = 1. Now g
centralizes the identity component of G,. A glance at Theorem 8.16 shows
that this forces g = =+ I, proving (iii). q.e.d.

Now we combine Theorem 9.1, Proposition 9.5 and Lemma 9.6, obtaining
the classification of complete parallelisms of reductive type.

9.7. Theorem. The complete connected pseudo-riemannian manifolds with
consistent absolute parallelism of reductive type are precisely the (M, ¢, ds*)
constructed as follows.

Step 1. (M_,,¢_,,ds* ). Choose an integer r > O, a real vector space \v of
dimension r, and an alternating trilinear form t ¢ A*(1v*) which is nondegenerate
on v in the sense that if 0 = we v, then t(w, v, w) = 0. Let p_, = gz, 10)
as in construction (7.2). Let b_, be the nondegenerate invariant bilinear form
(7.4a) on p_,. M_, is the simply connected Lie group for p_,,¢_, is its
parallelism of left translation, and ds*, is the bi-invariant metric induced by
b_,. Note that ds*, has signature (p_,,q_,) = (r,r). Let Z_, denote the group
of left translations on M _,.

Step 2. (M,, ¢, dst). Choose integers p,, q, > 0. M, is the real vector group
of dimension p, + q,., ¢, is its (euclidean) parallelism of (left) translation, and
ds? is a translation-invariant metric of signature (p,, q,). Let Z, denote the group
of all translations.
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Step 3. The (M;, ¢;,ds?) for 1 < i < u. Choose an integer u > 0. If 1 <
i < u, let p; be a simple real Lie algebra, M, the simply connected group for
;s &; its parallelism of left translation, and ds? the bi-invariant metric induced
by a nonzero real multiple of the Killing form of p;. Let (p;,q;) denote the
signature of ds:, and Z, the group of left translations of M.

Step 4. The (M;, ¢;,ds3) for u + 1 < i < t. Choose an integer t > u. If
u+1<i<t,let M; = G K} be one of

SO®)/SO(T), S0(4,4)/50(3,4), SO0(8,C)/SO(7,C) .

ds? is the invariant metric induced by a nonzero real multiple of the real Killing
form of the Lie algebra g; of G}. Let ¢ be the conjugation of g; by the sym-
metry at 1-K?%, 8 a Cartan involution of g, which commutes with ¢, and ¢ a
triality automorphism of order 3 on g, which commutes with 6 and has a fixed
point set of type G,. Then ¢; is the absolute parallelism on M; whose LTS is
p; = {e7'(0): veg; and a(v) = —v}. Let (py, q;) denote the signature of ds,
and Z, the center { =1} of the zsometry group of (M, ds?).

Step 5. (M¢daz) Define M = M XMyX - XM, é=2¢_,Xd,
X +o+ X ¢ and do* = ds*; X ds} X xdst Letp= Y ,p,andg = 3 q;;
then do* has signature (p, q). Denote Z Z XZyX -+ XZ,.

Step 6. (M, ¢,ds?) =D\(M, §,do?). Let D C Z be a discrete subgroup,
M = D\ M quotient manifold, ¢ parallelism on M induced by &, and ds* the
consistent pseudo-riemannian metric of signature (p, q) on M induced by do’.

We close by examining the conditions on (M, ¢, ds?) under which (M, ds?)
may be globally symmetric, compact, riemannian, etc. Note that homogeneity
is automatic: if (M, ¢, ds*) is complete and connected, then every ¢-parallel
vector field integrates to a 1-parameter group of isometries, and those isometries
generate a transitive group.

9.8. Corollary. The connected globally symmetric pseudo-riemannian mani-
folds with consistent absolute parallelism of reductive type are precisely the
(M, ¢, ds®) constructed in Theorem 9.7 with the additional condition: for —1
< [ < u the projection of D to Z, consists of translations by elements of the
center of the group M,.

Remark. Here note that M_, has center exp (1v*), that M, is commutative,
and that M, has discrete center for 1 < i < u.

Proof. Let (M, d,ds*) = D\(M , &, dg*) in the notation of Theorem 9.7.
Then (M, ds?) is symmetric if, and only if, every symmetry s, of (M, ds?)
induces a transformation of M. Thus the symmetry condition for (M, ds?) is
that every s, permute the D-orbits, i.e., that every s, normalize D in the iso-
metry group of (M, dd®). Let D, be the projectionof DCZ =Z_, X --- X Z,
to Z;. Then (M,ds") is symmetric if, and only if, each D, is normalized by
every symmetry of (M, ds?).

Ifu+1<i<t, then Z, = {1}, center of the isometry group of (M,, ds?),
so D, is centralized by every symmetry.
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Let —1 < i < u. If x, g e M,, then the symmetry of (M,, ds?) at x conjugates
left translation by g to right translation by x~'gx. Thus D, is normalized by the
symmetries if, and only if, it consists of translation by central elements.

9.9. Corollary. The compact connected pseudo-riemannian manifolds with
consistent absolute parallelism of reductive type are precisely the (M, ¢, ds*) of
Theorem 9.7 such the both Z|D and Z\M are compact. Z\M is compact if,
and only if, each quadric M, (u + 1 <i < 1) is an ordinary 7T-sphere
SO(8)/SO(7). Z has a discrete subgroup D such that Z|D is compact if, and
only if, the 3-form t of the construction of the Lie algebra 9_, = g(z, ) of
M _, can be chosen with rational coefficients.

Proof. We have a fibration M = D\ M — Z\ M with fibre Z/D. The total
space M is compact if, and only if, both fibre Z/D and base Z\M are compact.

Z\M is the product of the Z;\M;, hence is compact if and only if each
Z;\M, is compact. If —1 < i < u, then Z;\M; is reduced to a point, hence
is compact. If u + 1 < i < t, then Z, is finite, so Z;\M, is compact if and
only if M, is compact; the latter occurs only for M, = SO(8)/SO(7).

p_, = gz, ) is a nilpotent Lie algebra, and has a basis with rational struc-
ture constants if and only if r can be chosen with rational coefficients. The Lie
algebra p, of M, is commutative. Now a theorem of Mal’cev [10] says that =
can be chosen rational if, and only if, M_, X M, has a discrete subgroup with
compact quotient.

Suppose that = can be chosen rational. Then M_, X M, has a discrete sub-
group with compact quotient, and gives a left translation group E discrete in
Z_, X Z, with compact quotient. If 1 < i < u with M, noncompact, a theorem
of Borel [2] provides a discrete subgroup of M; with compact quotient, and
its left translation group is a discrete subgroup D; C Z; with Z,/D; compact.
In the other cases Z; is compact, and we take D; = {1}. Then D = E x D,
X -+ X D, is a discrete subgroup of Z with Z/D compact.

Conversely let D C Z be a discrete subgroup with Z/D compact. Permute
the M, 1 < i < u, so that M, is noncompact for 1 < i < v and compact for
v+ 1<i<u AsZ,., X -+ X Z, is compact, we replace D with its pro-

jection to 2/ =Z | X Z, X --+- X Z,. Now Z’ is a simply connected Lie
group whose solvable radical is the nilpotent group Z_, X Z, and whose
semisimple part Z, X --- X Z, has no compact factor. Thus a theorem of L.

Auslander [1] says that (Z_, X Z)/{D N (Z_, X Z,)} is compact, so r may
be chosen with rational coefficients.

9.10. Corollary. Let (M, &, do?) be a complete simply connected pseudo-
riemannian manifold with consistent absolute parallelism. Then the following
conditions are equivalent.

(i) @ is of reductive type relative to do*, and (M, §,do®) has a compact
globally symmetric quotient (M, ¢, ds®).

(ii) ¢ is of reductive type relative to da* and, in the notation of Theorem9.7,

(a) M_, is reduced to a point,



ABSOLUTE PARALLELISMS. II 37

(b) if1 < i< u, the group M, is compact,
(¢) ifu-+1<i<t, the quadric M; is a 7-sphere.

(iii) There is a riemannian metric dp* on M consistent with é. Then, if
(M, ¢, ds*) is a quotient of (M, 95, de*), dp® induces a riemannian metric dr* on
M consistent with ¢.

Proof. Assume (i) and let (M, ¢, ds?) = D\(M, &, ds*). Let D, be the pro-
jection of D to Z,. If —1 < i < u, then D, is central in Z; by Corollary 9.8,
and Z,/D; is compact by Corollary 9.9. That proves (a2) and (b) of (ii); (¢c)
follows directly from Corollary 9.9. Thus (i) implies (ii). For the converse let
D be a lattice in M,.

Assume (ii). Let d7? be any translation-invariant riemannian metric on M,.
For 1 < i < u let dr} be the metric induced by the negative of the Killing form
of p,. Foru + 1 <i < ¢t let dr? be the usual riemannian metric of constant
curvature. Now dp* = drj X --- X dr} has the required properties. Thus (ii)
implies (iii). Corollary 9.3 provides the converse.

10. Appendix: Lie triple systems

We collect the basic facts on Lie triple systems.

A. Foundations: N. Jacobson’s work ([7], or [8])

A Lie triple system (L'TS) is a vector space m with a trilinear “multiplica-
tion” map

m X m X m-—m denoted (x,¥,2) — [xyz]
such that

(10.1a) xxzl =0=[xyzl + [zxyl + [yzal,
(10,1b) [ablx y z]] = [la b x]yz] + [[b a ylxz] + [xyla b z]] .

If [ is a Lie algebra and m C [ is a subspace such that [[m, m], m] C m,
then m is a LTS under the composition [x y z] = [[x, y], z]; for then (10.1a)
is anticommutative and the Jacobi identity, and (10.1b) follows by iteration
of the Jacobi identity.

Let m be a LTS. By derivation of m we mean a linear map 6: m — m such
that

(10.2a) dxyz) =6 yzl + [xa(y) 2] + [xy a1 .
We denote

(10.2b) o(m): the Lie algebra of derivations of m.
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If {a;}, {b;} C m, we have the derivations } §,, ,, where &, ,(x) = [a b x] for
a, b, x ¢ m. Derivations of that sort are inner derivations. Denote

(10.2¢) Do(m): ideal in d(im) consisting of inner derivations.
Now consider the vector space
(10.32) B(m) = b(m) + m vector space direct sum

with the algebra structure
(10.3b) [D+ x,E + y] = (D, E] + d.,) + (DY) — E(x)) .

Then jH(m) is a Lie algebra, called the Aolomorph of m because every deriva-
tion of m is the restriction of an inner derivation of h(m). Also, b(m) = [m, m]
inside §(m), so the Lie subalgebra.of h(m) generated by m is the standard Lie
enveloping algebra of m:

(10.3¢) [,(m) = b(m) + m vector space direct sum.
Let m and n be LTS. If f: m — u is a linear map such that

flxyz] = [f(x) f(0) f(D] ,

then f is a homomorphism. If f is one-one and onto, i.e., if f~': 1 — m exists,
then f~' is a homomorphism and f is an isomorphism. If { is a Lie algebra and
f: m — [ is an injective LTS homomorphism such that f(im) generates [, then
we say that [ or (I, f) is a Lie enveloping algebra of m. Those always exist,
for one has [ (m).

The usual tensor algebra method provides a Lie enveloping algebra {,(im)
with the property: if (I,f) is any Lie enveloping algebra of m, then f extends
to a Lie algebra homomorphism of {z(m) onto [. Thus [,(m) is called the
universal Lie enveloping algebra of m. The case [ = [,(m) shows

Ip(m) = [m,m] + m vector space direct sum.

Also, if n = dim m then dim {;(m) < n(n + 1)/2.

Let m be a LTS. By subsystern of m we mean a subspace ¥ C m such that
[ff¥] C f. By ideal in m we mean a subspace i C m such that [imm] C i
(and thus also [m m i] C 1). The ideals of m are just the kernels f~'(0) of LTS
homomorphisms f: m — 1, 1 variable; if i is an ideal then m/1i inherits a LTS
structure from mt, the projection p: m — m/i is a homomorphism, and i =
p~Y(0) kernel.
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B. Structure: W.G. Lister’s work [9]

Let m C [ be a LTS in Lie enveloping algebra. Then [m, m] and [m, m] 4+ m
are subalgebras of [, sol = [n1, m] + m. If [m, m] N m = O, then one verifies
that [ has an automorphism ¢ whose + 1 eigenspace is [m, m]} and whose —1
eigenspace is m. This applies in particular to [(m) and to [;(m), and it is the
basic connection between LTS theory and symmetric space theory.

The derived series of a LTS m is the chain

(10.4a) m=m®>O>m®P">D... Dm* DO ..

of ideals of m defined by

(10.4b) mEP = [mm%» m®] .

m is solvable if its derived series terminates in O, i.e., if some m* = 0. If m
is solvable, then every Lie enveloping algebra of m is a solvable Lie algebra.

The radical of m is the span of the solvable ideals of m; it is the maximal
solvable ideal in m, and we denote

(10.5a) v(m): radical of m.
If t(m) = O, then m is semisimple. In general there is a Levi decomposition
(10.5b) m=23+ t(m), 35semisimple, 3 N t(m)=20.

The projection m — i /c(m) maps 8 = m/t(m) .

If m has no proper ideals, then m is simple. If [m m m] = 0, then m is
commutative. If m is simple, then either it is semisimple and noncommutative,
or it is 1-dimensional and commutative.

If m, and m, are LTS, then their direct sum is the LTS m = m, ® m, given
by ’

v, + x, »i+ ¥ z+ z]=kyzl+ )zl Xy, 2,em; .

Note that m, and m, are complementary ideals in m. Conversely, if m is a LTS
with complementary ideals m, and m,, then m = m, ® m,.

If m is semisimple, then m = m, @ - - - @ m, where the m; are its distinct
simple ideals; thus m> = m, every derivation of m is inner, and every linear
representation of m is completely reducible. Conversely, if {m,, ..., m,} are
noncommutative simple LTS, then m,; @ - .- @ m, is semisimple.

The structure of semisimple LTS was just reduced to that of simple LTS.
For the latter, let m C [;(m) be a noncommutative simple LTS in its universal
Lie enveloping algebra. Then there are just two cases, as follows.

(10.6) 1If m is the LTS of a (necessarily simple) Lie algebra ¥, then [;(m) =
@ f in such a manner that
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m={x,—x):xef} and [m,m]={(x,x):xel}.

Thus m is the —1 eigenspace of the involutive automorphism (x, )
— (¥, x) of [(m).

(10.7) If m is not the LTS of a Lie algebra, then {;(m) is simple, and m is
the —1 eigenspace of an involutive automorphism of {,(m).

Now the classification of simple LTS over an algebraically closed field is
more or less identical to the classification of compact irreducible riemannian

symmetric spaces.
Let m be a LTS. Then the center of m is

(10.8) 3m) = {xem: [xmm] =0} .

The representation theory of m coincides with that of {;(m). Thus the follow-
ing conditions are equivalent.

(10.9a) m has a faithful completely reducible linear representation.

(10.9b) [;(m) has a faithful completely reducible linear representation, i.e.,
[(m) is “reductive”.

(10.9¢) [y;(m) = 3D 8 where 3 is its center, 8 is semisimple, and 3 =
[{y(m), {;(m)] derived algebra.

(10.9d) m = 3(m) ® m™, and the derived LTS m*’ = [m m m] is semisimple.

Under the equivalent conditions (10.9) we say that m is reductive. From the
corresponding Lie algebra situation, we say that a subsystem n C m is reduc-
tive in m if the adjoint representation of [;(m) restricts to a completely reducible
representation of 1. Thus

(10,10a) m is reductive & m is reductive in n1,

(10.10b) if m is redhctive, and n is reductive in m, then {x ¢ m: [x nn] = O}
is reductive in m.

C. Invariant bilinear forms

Now we introduce a notion of invariant bilinear form for LTS. That is the
key to application of the theory of reductive LTS to the theory of pseudo-
riemannian symmetric spaces.

Let [ be a Lie algebra. Recall that invariant bilinear form on | means a
symmetric bilinear form b on [ such that b([x, yl, z) = b(x, [y, zI). It then
follows that
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b(z, [ly, x], wD = b(llx, y], z], w) = b(x, [[w, 2], y] .
The main example is the trace form
b.(x,y) = trace a(x)n(y)

of a linear representation = of . The algebra [ is reductive if, and only if, it
has a nondegenerate trace form. However (3.7) shows that a non-reductive
algebra might carry a nondegenerate invariant bilinear form.

Let m be a LTS. By invariant bilinear form on m we mean a symmetric
bilinear form b such that

(10.11) bz,[yxw]) = b(lxyz],w) = b(x,[wzyl) .

The preceding discussion shows that the restriction of an invariant bilinear form
on a Lie enveloping algebra of m is an invariant bilinear form on m.

10.12. Lemma. Let m be a LTS, and b an invariant bilinear form on m.

(i) The center 3 = {x e m: [x m m] = O} and the derived system m™® =
[m m m] satisfy b(z, m®) = 0.

(ii) If iis an ideal in m, then {x e m: b(x,1) = 0} is an ideal in m.

(iii) If Uis a Lie enveloping algebra of m in which [m, m] N m = 0, then
[ carries an invariant bilinear form b’ (in the sense of Lie algebras) such that
b=1"b|.

Proof. For (i) note b(3, m®) = b(z, [m m m]) = b([3 m m], m) = b(O, m)
= {0}.

For (ii) let § = {x e m: b(x,1) = O}. It is a linear subspace of m. If ie i,
jeiand x,ye m, then

b(ljxy], ) = b(j, [y x]) e b(j, 1) = {0},

so [jxylei.
For (iii) we define b” on m X m to agree with b; we define b’([m, m], m) = 0;
and we define b’ on [m, m] X [m, m] by

b'([x, y], [z, w]) = b([x y z],w) forx,y,z,wem .

That gives us a symmetric bilinear form »" on ! such that b = b’[ ;. Now we
check that b’ is invariant, i.e., that ’'([p, ql,r) = b(p,[q,r]D forall p,q,r e (.
It suffices to assume that each of p,q,r is in [m, m] U m and go by cases.

If p,q,r e m, then [p, ql, [q, 7] € [m, m] so &'([p, q),r) = 0 = b'(p, [g, rD.

If p,ge m and r = [z, w] with z, w e m, then b'([p, g1, r) = b'([p, 41, [z, w])
= b([p qz],w) = b(p, [wzql) = b(p,lq, [z, wl]) = b'(p, [q, r]), which takes
care of the case p, g e m and r ¢ [m, m], and the cases p, r ¢ m and g € [m, m],
and g,r e m and p € [m, m], follow immediately.

If pe m and g, r e [m, m], then [p, gl e m so b'([p.gl,r) = 0, and [q,r]
[m, m] so b'(p,[q,r]) = 0. The cases ge m and p,r ¢ [m, m], and re m and
P, g € [m, m], follow similarly.
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Finally, let p = [s,¢],q9 = [x, y] and r = [z, w] with s, ¢, x, y, z, w € m. Note
[p,q] + [y, [p,x]]1 + [x,[y,p]l = 0 and [g, r] + [[r, x],y] + [[y, ], x] = 0.
Using the invariance already checked, now

b'(lp, ql,r) = b'(llp, x1,¥1,r) — b'({lp,¥], x], 1)
= b'(lp, x), y, rD) — b'p, ¥), [x, r])
= b'(p, [x, [y, r]D) — b'(p, [y, [x, r]])
= b'(p,lq,r]) . q.e.d.

Suppose that m is a LTS and b is a nondegenerate invariant bilinear form.
Then x ¢ 3 & b([x m m],m) = 0 & b(x, [m m m]) = 0. Thus

(10.13a) 3t = m® relative to the form b, so
(10.13b) dimm = dim 3 + dimm® .

The analogous fact (that 3+ = [[, []) holds for nondegenerate invariant bilinear
forms on Lie algebras.

We extend a theorem of Dieudonné from Lie algebras to LTS.

10.14. Proposition. Le: m be a LTS, and b a nondegenerate invariant
bilinear form on m. If m has no nonzero ideal i such that [i mi] = 0, then
m =, @ .- P m, where the m, are simple ideals, b(n;, m;) = 0 for j + k,
and each blmm, is a nondegenerate invariant bilinear form.

Proof. Let m; be a minimal ideal in m. From Lemma 10.12, mi =
{xem: b(x,m;) = 0} is an ideal, so also 1 = m, N mi is an ideal. If i,jet
and x,y e m, then

b(lixfl,y) = b, [yjx]) e b(i, 1) = {0} ;

so [1 m i] = 0 by nondegeneracy of b. Thus 1 = 0 by hypothesis. Now m =
m, @ myi. The proposition holds for mji- by induction on dim m. q.e.d.

Conversely, (10.6) and (10.7) show that every semisimple LTS carries a
nondegenerate invariant bilinear form, in characteristic zero.

Now with (3.6) and (3.7) in mind, we introduce

10.15. Definition. Let m be a LTS, and b a nondegenerate invariant
bilinear form on m. Suppose

(i) b is nondegenerate on the center of 11, and

(i) if t is an ideal in m such that [i m 1] = O, then { is central in m, i.e.,

[imm] = 0.

Then we say that the pair (m, b) is of reductive type.

10.16. Theorem. Let m be a LTS, and b a nondegenerate invariant bilinear
form on wm such that (m,b) is of reductive type. Then m is reductive.
Moreover
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(10.17a) m=m®PmPD--.- Bu,,

where

(10.17b) w1, is the center of m and the other m; are simple ideals,
(10.17¢) bmy,my)) =0 for i#j, and

(10.17d) each blm,.m, is nondegenerate.

Conversely, if w1 is a reductive LTS over a field of characteristic zero, then it
carries a nondegenerate invariant bilinear form b such that (m,b) is of
reductive type.

Proof. Let (m, b) be of reductive type, m, be the center of m, and m’ =
{x e m: b(x,m,) = 0}. As b is nondegenerate on m,, now m = m, ® m’ and
b=>b,Pb'. Let i C m’ be an ideal such that [t m’i] = 0. As [t m,i] C
[mem m] =0, now [imi] = 0. Thus { C m, so i = 0. Now Proposition
10.14 says m’ = n; @ - -+ m, with &' = b, @ ... @ b,. That proves (10.17).

Conversely let m be reductive. Then m = 3 @ 8 where 3 is its center and 3
is semisimple. Let " be any nondegenerate bilinear form on 3, and choose a
nondegenerate invariant bilinear form b on 3; then b = b” @ b’ is a non-
degenerate invariant bilinear form on 3 ® 8 = m and is nondegenerate on 3.
If t C m is an ideal with [i mt i] = 0, then {1 i {] = 0, so i is solvable, whence
1C 3.

10.18. Corollary. Let m be a reductive LTS, and b a nondegenerate in-
variant bilinear form on m. Then (m, b) is of reductive type, the center m, of
m is b-orthogonal to the derived system m'V, and the distinct simple ideals of
m™ are mutually b-orthogonal.

Proof. As m is reductive, m = m, @ m, and (10.13a) says b(m,, m?) =
0. Now apply Proposition 10.14 to the semisimple system m.

10.19. Corollary. Let [ be a Lie algebra over a field of characteristic zero.
Then | is reductive if, and only if,

(1) every abelian ideal of | is central, and

(i) [ has a nondegenerate invariant bilinear form which is nondegenerate
on the center of 1.

If 1 is reductive and b is a nondegenerate invariant bilinear form, then the
center z of [ is b-orthogonal to the derived algebra !, and the distinct simple
ideals of I’ are mutually b-orthogonal.

Conditions (i) and (ii) both fail for the algebra (3.7).

Condition (i) does not imply (ii), as seen from the Lie algebra [ of
Sp(n, R)-H, where H, is the 2n + 1)-dimensional Heisenberg group, Sp(n, R)
acts irreducibly on a (2n-dimensional) complement to the center Z of H,, and
Sp(n, R) acts trivially on Z. Here 3 is the only abelian ideal in .
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